1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
//! A general suffix automaton implementation.

mod state;
pub use state::GeneralSAMState;

use std::convert::Infallible;

use crate::{
    ConstructiveTransitionTable, IterAsChain, TransitionTable, TravelEvent, TrieNodeAlike,
};

pub type GeneralSAMNodeID = usize;
pub const SAM_NIL_NODE_ID: GeneralSAMNodeID = 0;
pub const SAM_ROOT_NODE_ID: GeneralSAMNodeID = 1;

#[derive(Clone, Debug)]
pub struct GeneralSAMNode<TransTable: TransitionTable> {
    trans: TransTable,
    accept: bool,
    len: usize,
    link: GeneralSAMNodeID,
}

/// A general suffix automaton.
#[derive(Clone, Debug)]
pub struct GeneralSAM<TransTable: TransitionTable> {
    node_pool: Vec<GeneralSAMNode<TransTable>>,
    topo_and_suf_len_sorted_order: Vec<GeneralSAMNodeID>,
}

impl<TransTable: ConstructiveTransitionTable> GeneralSAMNode<TransTable> {
    fn new(accept: bool, len: usize, link: GeneralSAMNodeID) -> Self {
        Self {
            trans: Default::default(),
            accept,
            len,
            link,
        }
    }
}

impl<TransTable: TransitionTable> GeneralSAMNode<TransTable> {
    pub fn is_accepting(&self) -> bool {
        self.accept
    }

    pub fn max_suffix_len(&self) -> usize {
        self.len
    }

    pub fn get_suffix_parent_id(&self) -> GeneralSAMNodeID {
        self.link
    }

    pub fn get_trans(&self) -> &TransTable {
        &self.trans
    }

    fn alter_trans_table<NewTableType: TransitionTable<KeyType = TransTable::KeyType>>(
        &self,
    ) -> GeneralSAMNode<NewTableType> {
        GeneralSAMNode {
            trans: NewTableType::from_kv_iter(self.trans.iter()),
            accept: self.accept,
            len: self.len,
            link: self.link,
        }
    }
}

impl<TransTable: ConstructiveTransitionTable<KeyType = u8>> GeneralSAM<TransTable> {
    pub fn from_bytes<S: AsRef<[u8]>>(s: S) -> Self {
        let iter = IterAsChain::from(s.as_ref().iter().copied());
        Self::from_trie(iter)
    }
}

impl<TransTable: ConstructiveTransitionTable<KeyType = u32>> GeneralSAM<TransTable> {
    pub fn from_utf32<S: AsRef<[u32]>>(s: S) -> Self {
        let iter = IterAsChain::from(s.as_ref().iter().copied());
        Self::from_trie(iter)
    }
}

impl<TransTable: ConstructiveTransitionTable<KeyType = char>> GeneralSAM<TransTable> {
    pub fn from_chars<S: Iterator<Item = char>>(s: S) -> Self {
        let iter = IterAsChain::from(s);
        Self::from_trie(iter)
    }
}

impl<TransTable: ConstructiveTransitionTable> Default for GeneralSAM<TransTable> {
    fn default() -> Self {
        Self {
            node_pool: vec![
                GeneralSAMNode::new(false, 0, SAM_NIL_NODE_ID),
                GeneralSAMNode::new(true, 0, SAM_NIL_NODE_ID),
            ],
            topo_and_suf_len_sorted_order: Default::default(),
        }
    }
}

impl<TransTable: TransitionTable> GeneralSAM<TransTable> {
    pub fn num_of_nodes(&self) -> usize {
        self.node_pool.len()
    }

    pub fn get_root_node(&self) -> &GeneralSAMNode<TransTable> {
        self.get_node(SAM_ROOT_NODE_ID).unwrap()
    }

    pub fn get_node(&self, node_id: GeneralSAMNodeID) -> Option<&GeneralSAMNode<TransTable>> {
        self.node_pool.get(node_id)
    }

    pub fn get_root_state(&self) -> GeneralSAMState<TransTable, &GeneralSAM<TransTable>> {
        self.get_state(SAM_ROOT_NODE_ID)
    }

    pub fn get_state(
        &self,
        node_id: GeneralSAMNodeID,
    ) -> GeneralSAMState<TransTable, &GeneralSAM<TransTable>> {
        if node_id < self.node_pool.len() {
            GeneralSAMState { sam: self, node_id }
        } else {
            GeneralSAMState {
                sam: self,
                node_id: SAM_NIL_NODE_ID,
            }
        }
    }

    /// Returns topological sorted, maximum suffix length sorted
    /// and suffix parent depth sorted node id sequence,
    /// which is generated by topological sorting with a queue.
    pub fn get_topo_and_suf_len_sorted_node_ids(&self) -> &Vec<GeneralSAMNodeID> {
        &self.topo_and_suf_len_sorted_order
    }

    pub fn alter_trans_table<NewTableType: TransitionTable<KeyType = TransTable::KeyType>>(
        &self,
    ) -> GeneralSAM<NewTableType> {
        GeneralSAM {
            node_pool: self
                .node_pool
                .iter()
                .map(|x| x.alter_trans_table())
                .collect(),
            topo_and_suf_len_sorted_order: self.topo_and_suf_len_sorted_order.clone(),
        }
    }

    pub fn alter_trans_table_into<NewTableType: TransitionTable<KeyType = TransTable::KeyType>>(
        self,
    ) -> GeneralSAM<NewTableType> {
        GeneralSAM {
            node_pool: self
                .node_pool
                .iter()
                .map(|x| x.alter_trans_table())
                .collect(),
            topo_and_suf_len_sorted_order: self.topo_and_suf_len_sorted_order,
        }
    }
}

impl<TransTable: ConstructiveTransitionTable> GeneralSAM<TransTable> {
    pub fn from_trie<TN: TrieNodeAlike>(node: TN) -> Self
    where
        TN::InnerType: Into<TransTable::KeyType>,
    {
        let mut sam = Self::default();

        let accept_empty_string = node.is_accepting();

        sam.build_with_trie(node);
        sam.topo_sort_with_queue();
        sam.update_accepting();

        sam.node_pool[SAM_ROOT_NODE_ID].accept = accept_empty_string;

        sam
    }

    fn build_with_trie<TN: TrieNodeAlike>(&mut self, node: TN)
    where
        TN::InnerType: Into<TransTable::KeyType>,
    {
        node.bfs_travel(|event| -> Result<GeneralSAMNodeID, Infallible> {
            match event {
                TravelEvent::PushRoot(_) => Ok(SAM_ROOT_NODE_ID),
                TravelEvent::Push(cur_tn, cur_node_id, key) => {
                    Ok(self.insert_node_trans(*cur_node_id, key, cur_tn.is_accepting()))
                }
                TravelEvent::Pop(_, cur_node_id) => Ok(cur_node_id),
            }
        })
        .unwrap();
    }

    fn topo_sort_with_queue(&mut self) {
        let mut in_degree: Vec<usize> = vec![0; self.num_of_nodes()];

        self.node_pool.iter().for_each(|node| {
            node.trans.transitions().for_each(|v| {
                in_degree[*v] += 1;
            });
        });
        assert!(in_degree[SAM_ROOT_NODE_ID] == 0);

        self.topo_and_suf_len_sorted_order
            .reserve(self.node_pool.len());

        self.topo_and_suf_len_sorted_order.push(SAM_ROOT_NODE_ID);
        let mut head = 0;
        while head < self.topo_and_suf_len_sorted_order.len() {
            let u_id = self.topo_and_suf_len_sorted_order[head];
            head += 1;
            self.node_pool[u_id].trans.transitions().for_each(|v_id| {
                in_degree[*v_id] -= 1;
                if in_degree[*v_id] == 0 {
                    self.topo_and_suf_len_sorted_order.push(*v_id);
                }
            });
        }
    }

    fn update_accepting(&mut self) {
        self.topo_and_suf_len_sorted_order
            .iter()
            .rev()
            .for_each(|node_id| {
                let link_id = self.node_pool[*node_id].link;
                self.node_pool[link_id].accept |= self.node_pool[*node_id].accept;
            });
        self.node_pool[SAM_NIL_NODE_ID].accept = false;
    }

    fn alloc_node(&mut self, node: GeneralSAMNode<TransTable>) -> GeneralSAMNodeID {
        let id = self.node_pool.len();
        self.node_pool.push(node);
        id
    }

    fn insert_node_trans<Key: Into<TransTable::KeyType>>(
        &mut self,
        last_node_id: GeneralSAMNodeID,
        key: Key,
        accept: bool,
    ) -> GeneralSAMNodeID {
        let key: TransTable::KeyType = key.into();

        let new_node_id = {
            let last_node = &self.node_pool[last_node_id];
            self.alloc_node(GeneralSAMNode::new(
                accept,
                last_node.len + 1,
                SAM_NIL_NODE_ID,
            ))
        };

        let mut p_node_id = last_node_id;
        while p_node_id != SAM_NIL_NODE_ID {
            let p_node = &mut self.node_pool[p_node_id];
            if p_node.trans.contains_key(&key) {
                break;
            }
            p_node.trans.insert(key.clone(), new_node_id);
            p_node_id = p_node.link;
        }

        if p_node_id == SAM_NIL_NODE_ID {
            self.node_pool[new_node_id].link = SAM_ROOT_NODE_ID;
            return new_node_id;
        }

        let q_node_id = *self.node_pool[p_node_id].trans.get(&key).unwrap();
        let q_node = &self.node_pool[q_node_id];
        if q_node.len == self.node_pool[p_node_id].len + 1 {
            self.node_pool[new_node_id].link = q_node_id;
            return new_node_id;
        }

        let clone_node_id = self.alloc_node(q_node.clone());
        self.node_pool[clone_node_id].len = self.node_pool[p_node_id].len + 1;
        while p_node_id != SAM_NIL_NODE_ID {
            let p_node = &mut self.node_pool[p_node_id];
            if let Some(t_node_id) = p_node.trans.get_mut(&key) {
                if *t_node_id == q_node_id {
                    *t_node_id = clone_node_id;
                    p_node_id = p_node.link;
                    continue;
                }
            }
            break;
        }

        self.node_pool[new_node_id].link = clone_node_id;
        self.node_pool[q_node_id].link = clone_node_id;

        new_node_id
    }
}