Expand description
§GenAlg
A flexible, high-performance genetic algorithm library written in Rust.
§Overview
GenAlg is a modern, thread-safe genetic algorithm framework designed for flexibility, performance, and ease of use. It provides a robust foundation for implementing evolutionary algorithms to solve optimization problems across various domains.
§Key Features
- Thread-safe: Designed for parallel processing with
Send
andSync
traits - High Performance: Optimized for speed with thread-local random number generation
- Flexible: Adaptable to a wide range of optimization problems
- Extensible: Easy to implement custom phenotypes, fitness functions, and breeding strategies
- Parallel Processing: Automatic parallelization for large populations using Rayon
- Local Search: Integrated local search algorithms to refine solutions
- Constraint Handling: Support for combinatorial optimization with constraint management
- Fitness Caching: Efficient caching for expensive fitness evaluations
§Core Components
§Phenotype
The Phenotype
trait defines the interface for types that represent individuals
in an evolutionary algorithm. It provides methods for crossover and mutation.
use genalg::phenotype::Phenotype;
use genalg::rng::RandomNumberGenerator;
#[derive(Clone, Debug)]
struct MyPhenotype {
value: f64,
}
impl Phenotype for MyPhenotype {
fn crossover(&mut self, other: &Self) {
// Combine genetic material with another individual
self.value = (self.value + other.value) / 2.0;
}
fn mutate(&mut self, rng: &mut RandomNumberGenerator) {
// Introduce random changes
let values = rng.fetch_uniform(-0.1, 0.1, 1);
let delta = values.front().unwrap();
self.value += *delta as f64;
}
// Optional: Override for better performance in parallel contexts
fn mutate_thread_local(&mut self) {
// Custom implementation using thread-local RNG
use genalg::rng::ThreadLocalRng;
let delta = ThreadLocalRng::gen_range(-0.1..0.1);
self.value += delta;
}
}
§Challenge
The Challenge
trait defines how to evaluate the fitness of phenotypes:
use genalg::evolution::Challenge;
use genalg::phenotype::Phenotype;
#[derive(Clone, Debug)]
struct MyPhenotype {
value: f64,
}
// Implementation of Phenotype trait omitted for brevity
#[derive(Clone)]
struct MyChallenge {
target: f64,
}
impl Challenge<MyPhenotype> for MyChallenge {
fn score(&self, phenotype: &MyPhenotype) -> f64 {
// Calculate and return fitness score (higher is better)
1.0 / (phenotype.value - self.target).abs().max(0.001)
}
}
§Breeding Strategies
GenAlg provides several built-in breeding strategies:
-
OrdinaryStrategy
: A basic breeding strategy where the first parent is considered the winner of the previous generation. -
BoundedBreedStrategy
: Similar toOrdinaryStrategy
but imposes bounds on phenotypes during evolution using theMagnitude
trait. -
CombinatorialBreedStrategy
: Specialized for combinatorial optimization problems, supporting constraint handling and penalty-based fitness adjustment.
§Selection Strategies
GenAlg provides several built-in selection strategies for choosing parents based on their fitness:
-
ElitistSelection
: Selects the best individuals based on fitness scores. -
TournamentSelection
: Selects individuals through tournament selection. -
RouletteWheelSelection
: Selects individuals with probability proportional to fitness. -
RankBasedSelection
: Selects individuals based on their rank in the population.
§Local Search Algorithms
GenAlg integrates local search algorithms to refine solutions during the evolutionary process:
-
HillClimbing
: A simple hill climbing algorithm that iteratively moves to better neighboring solutions. -
SimulatedAnnealing
: A probabilistic algorithm that allows moves to worse solutions with decreasing probability. -
TabuSearch
: A metaheuristic that maintains a list of recently visited solutions to avoid cycling. -
HybridLocalSearch
: Combines multiple local search algorithms for more effective refinement.
Local search can be applied to selected individuals using various strategies:
-
AllIndividualsStrategy
: Applies local search to all individuals in the population. -
TopNStrategy
: Applies local search to the top N individuals based on fitness. -
TopPercentStrategy
: Applies local search to a percentage of the top individuals. -
ProbabilisticStrategy
: Applies local search to individuals with a certain probability.
§Constraint Handling
For combinatorial optimization problems, GenAlg provides constraint handling capabilities:
-
Constraint
: Trait for defining constraints on phenotypes. -
ConstraintManager
: Manages multiple constraints and provides methods for checking and repairing solutions. -
PenaltyAdjustedChallenge
: Wraps a challenge to adjust fitness scores based on constraint violations. -
Built-in constraints for combinatorial problems like
UniqueElementsConstraint
,CompleteAssignmentConstraint
, etc.
§Evolution Launcher
The EvolutionLauncher
manages the evolution process using a specified breeding
strategy, selection strategy, local search manager, and challenge. It now requires four parameters:
a breeding strategy, a selection strategy, an optional local search manager, and a challenge.
use genalg::{
evolution::{Challenge, EvolutionLauncher, EvolutionOptions, LogLevel},
phenotype::Phenotype,
rng::RandomNumberGenerator,
breeding::OrdinaryStrategy,
selection::ElitistSelection,
local_search::{HillClimbing, AllIndividualsStrategy},
};
#[derive(Clone, Debug)]
struct MyPhenotype {
value: f64,
}
// Implementation of Phenotype trait omitted for brevity
#[derive(Clone)]
struct MyChallenge {
target: f64,
}
impl Challenge<MyPhenotype> for MyChallenge {
fn score(&self, phenotype: &MyPhenotype) -> f64 {
// Calculate and return fitness score (higher is better)
1.0 / (phenotype.value - self.target).abs().max(0.001)
}
}
// Create components for evolution
let breed_strategy = OrdinaryStrategy::default();
let selection_strategy = ElitistSelection::default();
let challenge = MyChallenge { target: 42.0 };
let options = EvolutionOptions::default();
let starting_value = MyPhenotype { value: 0.0 };
// Create launcher with breeding, selection, and challenge
// Note: The third parameter (local_search_manager) can be None if local search is not needed
let launcher: EvolutionLauncher<
MyPhenotype,
OrdinaryStrategy,
ElitistSelection,
HillClimbing,
MyChallenge,
AllIndividualsStrategy
> = EvolutionLauncher::new(
breed_strategy,
selection_strategy,
None, // No local search
challenge
);
// Configure and run the evolution
let result = launcher
.configure(options, starting_value)
.with_seed(42) // Optional: Set a specific seed
.run();
If you want to use local search, you can create a local search manager and pass it to the launcher:
use genalg::{
evolution::{Challenge, EvolutionLauncher, EvolutionOptions, LogLevel},
phenotype::Phenotype,
rng::RandomNumberGenerator,
breeding::OrdinaryStrategy,
selection::ElitistSelection,
local_search::{HillClimbing, AllIndividualsStrategy, LocalSearchManager},
};
// Define a simple phenotype
#[derive(Clone, Debug)]
struct MyPhenotype {
value: f64,
}
impl Phenotype for MyPhenotype {
fn crossover(&mut self, other: &Self) {
self.value = (self.value + other.value) / 2.0;
}
fn mutate(&mut self, rng: &mut RandomNumberGenerator) {
let values = rng.fetch_uniform(-0.1, 0.1, 1);
let delta = values.front().unwrap();
self.value += *delta as f64;
}
}
// Define a challenge
#[derive(Clone)]
struct MyChallenge {
target: f64,
}
impl Challenge<MyPhenotype> for MyChallenge {
fn score(&self, phenotype: &MyPhenotype) -> f64 {
1.0 / (phenotype.value - self.target).abs().max(0.001)
}
}
// Create components for evolution
let breed_strategy = OrdinaryStrategy::default();
let selection_strategy = ElitistSelection::default();
let challenge = MyChallenge { target: 42.0 };
let options = EvolutionOptions::default();
let starting_value = MyPhenotype { value: 0.0 };
// Create a local search manager
let hill_climbing = HillClimbing::new(10, 10).unwrap();
let application_strategy = AllIndividualsStrategy::new();
let local_search_manager = Some(
LocalSearchManager::new(hill_climbing, application_strategy)
);
// Create launcher with breeding, selection, local search, and challenge
let launcher: EvolutionLauncher<
MyPhenotype,
OrdinaryStrategy,
ElitistSelection,
HillClimbing,
MyChallenge,
AllIndividualsStrategy
> = EvolutionLauncher::new(
breed_strategy,
selection_strategy,
local_search_manager,
challenge
);
// Configure and run the evolution with local search
let result = launcher
.configure(options, starting_value)
.with_seed(42)
.with_local_search() // Enable local search
.run();
You can also use the builder pattern to create an EvolutionLauncher
:
fn create_launcher() -> Result<EvolutionLauncher<
MyPhenotype,
OrdinaryStrategy,
ElitistSelection,
HillClimbing,
MyChallenge,
AllIndividualsStrategy
>> {
let breed_strategy = OrdinaryStrategy::default();
let selection_strategy = ElitistSelection::default();
let challenge = MyChallenge { target: 42.0 };
// Create a local search strategy and application strategy
let hill_climbing = HillClimbing::new(10, 10)?;
let application_strategy = AllIndividualsStrategy::new();
// Use the builder pattern
EvolutionLauncher::builder()
.with_breed_strategy(breed_strategy)
.with_selection_strategy(selection_strategy)
.with_local_search_manager(hill_climbing, application_strategy)
.with_challenge(challenge)
.build()
}
§Fitness Caching
For expensive fitness evaluations, GenAlg provides caching mechanisms:
use genalg::{
caching::{CacheKey, CachedChallenge},
evolution::Challenge,
phenotype::Phenotype,
};
#[derive(Clone, Debug)]
struct MyPhenotype {
value: f64,
}
// Implementation of Phenotype trait omitted for brevity
// Implement CacheKey to enable caching
impl CacheKey for MyPhenotype {
// Use i32 as the key type since it implements Hash and Eq
type Key = i32;
fn cache_key(&self) -> Self::Key {
// Convert the f64 value to an i32 for caching
// In a real implementation, you might want to use a more sophisticated
// conversion that preserves more precision
self.value as i32
}
}
#[derive(Clone)]
struct MyChallenge {
target: f64,
}
impl Challenge<MyPhenotype> for MyChallenge {
fn score(&self, phenotype: &MyPhenotype) -> f64 {
// Expensive calculation
1.0 / (phenotype.value - self.target).abs().max(0.001)
}
}
// Create a cached version of the challenge
let challenge = MyChallenge { target: 42.0 };
let cached_challenge = CachedChallenge::new(challenge);
§Thread-Local Random Number Generation
For optimal performance in parallel contexts, GenAlg provides thread-local random
number generation through the ThreadLocalRng
struct:
use genalg::rng::ThreadLocalRng;
// Generate a random number in a range
let value = ThreadLocalRng::gen_range(0.0..1.0);
// Generate multiple random numbers
let numbers = ThreadLocalRng::fetch_uniform(0.0, 1.0, 5);
§Parallel Processing
GenAlg automatically uses parallel processing for fitness evaluation and breeding
when the population size exceeds the parallel threshold. Configure this in your
EvolutionOptions
:
use genalg::evolution::options::{EvolutionOptions, LogLevel};
// Using the builder pattern
let options = EvolutionOptions::builder()
.num_generations(100)
.log_level(LogLevel::Info)
.population_size(10)
.num_offspring(50)
.parallel_threshold(500) // Use parallel processing when population >= 500
.build();
// Or using setter methods
let mut options = EvolutionOptions::default();
options.set_parallel_threshold(500);
§Performance Characteristics
GenAlg is optimized for parallel processing with larger populations:
- Parallel operations show significant performance improvements for larger populations
- Thread-local RNG eliminates mutex contention in parallel contexts
- Automatic parallelization occurs when population size exceeds the parallel threshold
- Optimal threshold depends on your specific hardware and problem complexity
For best performance:
- Use
mutate_thread_local()
in your phenotype implementations - Set an appropriate parallel threshold based on your hardware
- Consider using the
OrdinaryStrategy
for very large populations - Use fitness caching for expensive evaluations
§Error Handling
GenAlg provides a comprehensive error handling system through the error
module:
use genalg::error::{GeneticError, Result, ResultExt, OptionExt};
fn my_function() -> Result<()> {
// Return specific errors
if false {
return Err(GeneticError::Configuration("Invalid parameter".to_string()));
}
// Convert Option to Result with custom error
let candidates = vec![1, 2, 3];
let best = candidates.iter().max().ok_or_else_genetic(||
GeneticError::EmptyPopulation
)?;
Ok(())
}
§Modules
error
: Error types and utilitiesevolution
: Evolution process managementphenotype
: Phenotype trait definitionrng
: Random number generation utilities- [
strategy
]: Breeding strategy implementations selection
: Selection strategy implementationslocal_search
: Local search algorithms and application strategiesconstraints
: Constraint handling for combinatorial optimizationcaching
: Fitness caching for expensive evaluations
Re-exports§
pub use breeding::combinatorial::CombinatorialBreedConfig;
pub use breeding::combinatorial::CombinatorialBreedStrategy;
pub use breeding::bounded::BoundedBreedConfig;
pub use breeding::bounded::BoundedBreedStrategy;
pub use breeding::bounded::Magnitude;
pub use breeding::ordinary::OrdinaryStrategy;
pub use breeding::BreedStrategy;
pub use caching::CacheKey;
pub use caching::CachedChallenge;
pub use caching::ThreadLocalCachedChallenge;
pub use constraints::Constraint;
pub use constraints::ConstraintManager;
pub use constraints::ConstraintViolation;
pub use error::GeneticError;
pub use error::OptionExt;
pub use error::Result;
pub use error::ResultExt;
pub use evolution::Challenge;
pub use evolution::EvolutionLauncher;
pub use evolution::EvolutionOptions;
pub use evolution::EvolutionResult;
pub use evolution::LogLevel;
pub use local_search::HillClimbing;
pub use local_search::LocalSearch;
pub use local_search::SimulatedAnnealing;
pub use phenotype::Phenotype;
pub use rng::ThreadLocalRng;
pub use selection::ElitistSelection;
pub use selection::RankBasedSelection;
pub use selection::RouletteWheelSelection;
pub use selection::SelectionStrategy;
pub use selection::TournamentSelection;
Modules§
- breeding
- BreedStrategy
- caching
- Caching Module
- constraints
- Constraints Module
- error
- Error Types
- evolution
- local_
search - Local Search Algorithms
- phenotype
- Phenotype Trait
- rng
- RandomNumberGenerator
- selection