1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
use std::{
    fmt::{self, Display},
    io::{self, Write},
};
pub mod colchar;
mod point;
pub mod utils;
mod vec2d;
pub use colchar::{ColChar, Colour, Modifier};
pub use point::Point;
pub use utils::Wrapping;
pub use vec2d::Vec2D;
/// The View struct is the canvas on which you will print all of your ViewElements. In normal use, you would clear the View, `blit` all your ViewElements to it and then render. The following example demonstrates a piece of code that will render a View of width 9 and height 3, with a single Point in the middle
/// ```
/// use gemini_engine::elements::{view::{Wrapping, ColChar}, View, Point, Vec2D};
///
/// let mut view = View::new(9, 3, ColChar::BACKGROUND);
/// let point = Point::new(Vec2D::new(4,1), ColChar::SOLID);
///
/// view.blit(&point, Wrapping::Panic);
///
/// view.display_render().unwrap();
/// ```
#[derive(Debug, Clone)]
pub struct View {
    /// The width of the View
    pub width: usize,
    /// The height of the View
    pub height: usize,
    /// The character that the View will be filled with by default on clear
    pub background_char: ColChar,
    /// A boolean determining whether the render should contain numbers on the top and left signifying the corresponding pixels' X/Y value values
    pub coord_numbers_in_render: bool,
    pixels: Vec<ColChar>,
}
impl View {
    pub fn new(width: usize, height: usize, background_char: ColChar) -> View {
        let mut view = View {
            width,
            height,
            background_char,
            coord_numbers_in_render: false,
            pixels: Vec::new(),
        };
        view.clear();
        view
    }
    /// Return the size of the [`View`] as a [`Vec2D`](vec2d)
    pub fn size(&self) -> Vec2D {
        Vec2D::new(self.width as isize, self.height as isize)
    }
    /// Return a Vec2D of the centre of the screen
    pub fn center(&self) -> Vec2D {
        self.size() / 2
    }
    pub fn clear(&mut self) {
        self.pixels = vec![self.background_char; self.width * self.height]
    }
    pub fn plot(&mut self, pos: Vec2D, c: ColChar, wrapping: Wrapping) {
        let mut pos = pos;
        let in_bounds_pos = pos % self.size();
        match wrapping {
            Wrapping::Wrap => pos = in_bounds_pos,
            Wrapping::Ignore => {
                if pos.x < 0 || pos.y < 0 || pos != in_bounds_pos {
                    return;
                }
            }
            Wrapping::Panic => {
                if pos.x < 0 || pos.y < 0 || pos != in_bounds_pos {
                    panic!("{} is not within the view's boundaries", pos);
                }
            }
        }
        let ux = pos.x as usize;
        let uy = pos.y as usize;
        self.pixels[self.width * uy + ux] = c;
    }
    /// Blit a ViewElement to the screen. This is usually done before rendering.
    pub fn blit<T: ViewElement>(&mut self, element: &T, wrapping: Wrapping) {
        let active_pixels = element.active_pixels();
        for point in active_pixels {
            self.plot(point.pos, point.fill_char, wrapping);
        }
    }
    /// Display the View. View implements the Display trait so you can display it how you wish, but this is intended to be the fastest way possible
    pub fn display_render(&self) -> io::Result<()> {
        let mut stdout = io::stdout().lock();
        write!(stdout, "{self}")
    }
}
impl Display for View {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let _ = utils::prepare_terminal(f);
        f.write_str("\x1b[H\x1b[J")?;
        if self.coord_numbers_in_render {
            let nums: String = (0..self.width)
                .map(|i| i.to_string().chars().last().unwrap_or(' '))
                .collect();
            writeln!(f, " {}", nums).unwrap();
        }
        for y in 0..self.height {
            let row = &self.pixels[self.width * y..self.width * (y + 1)];
            if self.coord_numbers_in_render {
                let num = y.to_string().chars().last().unwrap_or(' ');
                write!(f, "{num}").unwrap();
            }
            row[0].display_with_prev_and_next(f, None, Some(row[1].modifier))?;
            for x in 1..(row.len() - 1) {
                row[x].display_with_prev_and_next(
                    f,
                    Some(row[x - 1].modifier),
                    Some(row[x + 1].modifier),
                )?;
            }
            row[row.len() - 1].display_with_prev_and_next(
                f,
                Some(row[row.len() - 2].modifier),
                None,
            )?;
            f.write_str("\r\n")?;
        }
        f.write_str("\x1b[J")?;
        Ok(())
    }
}
/// ViewElement is a trait that must be implemented by any element that can be blitted to a View
pub trait ViewElement {
    /// Return a vector of every coordinate where a pixel should be placed and its respective [`ColChar`]. If your whole object is a solid colour, consider using [`utils::points_to_pixels()`] which will add the same [`ColChar`] to every point and can then be used as this function's output
    fn active_pixels(&self) -> Vec<Point>;
}