1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
//! Gemini's core elements module. This and the [`view`] module make up Gemini's core rendering pipeline.
//!
//! ## Quick Start
//! Let's get started with a simple program to demonstrate how Gemini works:
//! ```rust,no_run
//! use gemini_engine::elements::{Point, Vec2D, view::{View, ColChar, Wrapping}};
//! use gemini_engine::gameloop;
//!
//! const FPS: u32 = 30;
//!
//! fn main() {
//! let mut view = View::new(40, 8, ColChar::BACKGROUND);
//! let mut point = Point::new(Vec2D::new(10,5), ColChar::SOLID);
//!
//! loop {
//! view.clear();
//!
//! point.pos.x += 1;
//!
//! view.blit(&point, Wrapping::Wrap);
//! view.display_render().unwrap();
//!
//! gameloop::sleep_fps(FPS, None);
//! }
//! }
//! ```
//! Ok, let's go over this and see what's going on. We start by creating a [`View`] and [`Point`]. the [`View`] takes two numbers for the width and height, as well as a [`ColChar`]. The [`Point`] takes a [`Vec2D`] and a [`ColChar`].
//!
//! We use [`ColChar`] to say exactly what each pixel should look like and what colour it should be. Here we used the built in `ColChar::BACKGROUND` and `ColChar::SOLID` to keep the code simple. You can read more in the [`ColChar`] documentation.
//!
//! At its heart, [`Vec2D`] is just a pair of `isize` integers for defining things such as position, size and movement. We used it here to define the [`Point`]'s starting position, before the game loop.
//!
//! Now that we've got initialisation out of the way, let's get on to the juicy part: the main loop. In Gemini the main loop always goes as follows:
//! 1. Clear the [`View`]
//! 2. Work through any logic you might have (moving things around, taking inputs etc.)
//! 3. Blit all the [`ViewElement`]s to the screen
//! 4. print the result of `View.display_render`
//! 5. Sleep
//!
//! In our case, we want to move our [`Point`] one unit to the right every frame, so we increase its value by one here. Next we blit the [`Point`] to the [`View`] (adding it to the [`View`]'s internal canvas) and render. Rendering will display the view in the terminal (make sure your terminal is large enough to fit the whole image!). The last line of our code sleeps for `1/FPS` seconds. We pass None in place of what would normally be a Some(Duration) type, displaying the amount of time it took to blit and render everything so that [`gameloop::sleep_fps`](crate::gameloop::sleep_fps) can accomodate for the time taken to render. Since this example program is quite simple, we've just passed None. You can see how best to write a gameloop in the [`gameloop`](crate::gameloop) documentation.
//!
//! There you have it! You've written your first program with Gemini! As of me writing this now it's still very much a work in progress, so any feedback or issue requests would be appreciated :)
pub mod view;
use view::utils::{self, BlitCache};
use view::{ColChar, Modifier, ViewElement};
pub use view::{Point, Vec2D, View};
/// A `PixelContainer` only has a [`pixels`](PixelContainer::pixels) property, which gets returned directly to the View during blit
pub struct PixelContainer {
pub pixels: Vec<Point>,
}
impl PixelContainer {
pub fn new() -> Self {
Self { pixels: vec![] }
}
pub fn push(&mut self, pixel: Point) {
self.pixels.push(pixel);
}
pub fn append(&mut self, pixels: &mut Vec<Point>) {
self.pixels.append(pixels);
}
/// Blit a [`ViewElement`] to the PixelContainer.
pub fn blit<T: ViewElement>(&mut self, element: &T) {
let mut active_pixels = element.active_pixels();
self.append(&mut active_pixels);
}
}
impl From<Vec<(Vec2D, ColChar)>> for PixelContainer {
fn from(pixels: Vec<(Vec2D, ColChar)>) -> Self {
Self {
pixels: pixels.iter().map(|x| Point::from(*x)).collect(),
}
}
}
impl ViewElement for PixelContainer {
fn active_pixels(&self) -> Vec<Point> {
self.pixels.clone()
}
}
/// The `Line` takes two [`Vec2D`]s and returns a line between those vertices when blit to a [`View`]
pub struct Line {
pub pos0: Vec2D,
pub pos1: Vec2D,
pub fill_char: ColChar,
cache: BlitCache<Vec2D>,
}
impl Line {
pub fn new(pos0: Vec2D, pos1: Vec2D, fill_char: ColChar) -> Self {
Line {
pos0,
pos1,
fill_char,
cache: BlitCache::DEFAULT,
}
}
/// Generate a [`BlitCache`] if you intend for the line to not move across multiple frames. If you use this, you MUST call generate_cache if the line does move in the future. This function will not generate a new cache if the previously generated cache is still valid
pub fn generate_cache(&mut self) {
if !self.cache.is_cache_valid(&vec![self.pos0, self.pos1]) {
let points = Self::draw(self.pos0, self.pos1);
self.cache = BlitCache::new(vec![self.pos0, self.pos1], points);
}
}
/// Draw a line using Bresenham's line algorithm. Returns a list of the pixels to print to
pub fn draw(pos0: Vec2D, pos1: Vec2D) -> Vec<Vec2D> {
// Use Bresenham's line algorithm to generate active pixels at rendertime
let mut points = Vec::new();
let (mut x, mut y) = pos0.as_tuple();
let (x1, y1) = pos1.as_tuple();
let dx = (x1 - x).abs();
let sx = if x < x1 { 1 } else { -1 };
let dy = -(y1 - y).abs();
let sy = if y < y1 { 1 } else { -1 };
let mut error = dx + dy;
loop {
let pixel = Vec2D::new(x, y);
points.push(pixel);
let e2 = error * 2;
if e2 >= dy {
if x == x1 {
break;
};
error += dy;
x += sx;
};
if e2 <= dx {
if y == y1 {
break;
};
error += dx;
y += sy;
};
}
points
}
}
impl ViewElement for Line {
fn active_pixels(&self) -> Vec<Point> {
let cache = self.cache.dependent();
let points = match cache {
Some(c) => c,
None => Self::draw(self.pos0, self.pos1),
};
utils::points_to_pixels(points, self.fill_char)
}
}
/// The `Triangle` takes three [`Vec2D`]s and returns a triangle with those vertices when blit to a [`View`]
pub struct Triangle {
pub pos0: Vec2D,
pub pos1: Vec2D,
pub pos2: Vec2D,
pub fill_char: ColChar,
cache: BlitCache<Vec2D>,
}
impl Triangle {
pub fn new(pos0: Vec2D, pos1: Vec2D, pos2: Vec2D, fill_char: ColChar) -> Self {
Triangle {
pos0,
pos1,
pos2,
fill_char: fill_char,
cache: BlitCache::DEFAULT,
}
}
/// Generate a [`BlitCache`] if you intend for the triangle to not move across multiple frames. If you use this, you MUST call generate_cache if the triangle does move in the future. This function will not generate a new cache if the previously generated cache is still valid
pub fn generate_cache(&mut self) {
if !self.cache.is_cache_valid(&vec![self.pos0, self.pos1]) {
let points = Self::draw(self.corners());
self.cache = BlitCache::new(self.corners().to_vec(), points);
}
}
/// Return the triangle's points as an array
pub fn corners(&self) -> [Vec2D; 3] {
[self.pos0, self.pos1, self.pos2]
}
/// Takes three corner [`Vec2D`]s and returns the points you should plot to the screen to make a triangle
pub fn draw(corners: [Vec2D; 3]) -> Vec<Vec2D> {
let mut points = vec![];
let mut corners = corners;
corners.sort_unstable_by_key(|k| k.y);
let (x0, y0) = corners[0].as_tuple();
let (x1, y1) = corners[1].as_tuple();
let (x2, y2) = corners[2].as_tuple();
let mut x01 = utils::interpolate(y0, x0 as f64, y1, x1 as f64);
let x12 = utils::interpolate(y1, x1 as f64, y2, x2 as f64);
let x02 = utils::interpolate(y0, x0 as f64, y2, x2 as f64);
x01.pop();
let mut x012 = x01;
x012.extend(x12);
let m = (x012.len() as f64 / 2.0).floor() as usize;
let (x_left, x_right) = match x02[m] < x012[m] {
true => (x02, x012),
false => (x012, x02),
};
for (i, y) in (y0..y2).enumerate() {
for x in x_left[i]..x_right[i] {
points.push(Vec2D::new(x as isize, y));
}
}
points
}
}
impl ViewElement for Triangle {
fn active_pixels(&self) -> Vec<Point> {
let cache = self.cache.dependent();
let points = match cache {
Some(c) => c,
None => Self::draw(self.corners()),
};
utils::points_to_pixels(points, self.fill_char)
}
}
/// The `Polygon` takes a vec of [`Vec2D`]s and returns a polygon with those vertices when blit to a [`View`]
pub struct Polygon {
pub points: Vec<Vec2D>,
pub fill_char: ColChar,
cache: BlitCache<Vec2D>,
}
impl Polygon {
pub fn new(points: Vec<Vec2D>, fill_char: ColChar) -> Self {
Self {
points,
fill_char,
cache: BlitCache::DEFAULT,
}
}
/// Generate a [`BlitCache`] if you intend for the polygin to not move across multiple frames. If you use this, you MUST call generate_cache if the polygon does move in the future. This function will not generate a new cache if the previously generated cache is still valid
pub fn generate_cache(&mut self) {
if !self.cache.is_cache_valid(&self.points) {
let points = Self::draw(self.points.clone());
self.cache = BlitCache::new(self.points.to_vec(), points);
}
}
/// Draw a polygon from points. Only supports convex polygons as of now
pub fn draw(vertices: Vec<Vec2D>) -> Vec<Vec2D> {
let mut points = vec![];
for fi in 1..vertices.len() {
points.extend(Triangle::draw([
vertices[0],
vertices[fi],
vertices[(fi + 1) % vertices.len()],
]))
}
points
}
}
impl ViewElement for Polygon {
fn active_pixels(&self) -> Vec<Point> {
let cache = self.cache.dependent();
let points = match cache {
Some(c) => c,
None => Self::draw(self.points.clone()),
};
utils::points_to_pixels(points, self.fill_char)
}
}
/// The `Polygon` takes a position and size, and returns a box at that position with that width and size when blit to a [`View`]
pub struct Box {
pub pos: Vec2D,
pub size: Vec2D,
pub fill_char: ColChar,
_private: (),
}
impl Box {
pub fn new(pos: Vec2D, size: Vec2D, fill_char: ColChar) -> Self {
Self {
pos,
size,
fill_char,
_private: (),
}
}
}
impl ViewElement for Box {
fn active_pixels(&self) -> Vec<Point> {
let mut points = vec![];
for x in 0..self.size.x {
for y in 0..self.size.y {
points.push(self.pos + Vec2D { x, y })
}
}
utils::points_to_pixels(points, self.fill_char)
}
}
/// A `ViewElement` that takes a multi-line string as a parameter, and can be used to put ASCII art, text and other such things on the View
pub struct Sprite {
pub pos: Vec2D,
pub texture: String,
pub modifier: Modifier,
_private: (),
}
impl Sprite {
pub fn new(pos: Vec2D, texture: &str, modifier: Modifier) -> Self {
let mut texture = String::from(texture);
if texture.starts_with('\n') {
texture.pop();
}
Self {
pos,
texture,
modifier,
_private: (),
}
}
}
impl ViewElement for Sprite {
fn active_pixels(&self) -> Vec<Point> {
let mut pixels = vec![];
let lines = self.texture.split("\n");
for (y, line) in lines.enumerate() {
for (x, char) in line.chars().enumerate() {
if char != ' ' {
pixels.push(Point::new(
self.pos + Vec2D::new(x as isize, y as isize),
ColChar {
fill_char: char,
modifier: self.modifier,
},
));
}
}
}
pixels
}
}