1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
use crate::{Cardinal, Direction, Vector};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};

#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(transparent)]
pub struct Angle<T = f32> {
    radians: T,
}

#[allow(non_snake_case)]
impl<T: en::Float> Angle<T> {
    pub fn ZERO() -> Self {
        Self::from_radians(T::zero())
    }

    pub fn FRAC_PI_2() -> Self {
        Self::from_radians(T::FRAC_PI_2())
    }

    pub fn FRAC_3PI_2() -> Self {
        Self::from_radians(T::FRAC_PI_2() * T::three())
    }

    pub fn FRAC_PI_3() -> Self {
        Self::from_radians(T::FRAC_PI_3())
    }

    pub fn FRAC_PI_4() -> Self {
        Self::from_radians(T::FRAC_PI_4())
    }

    pub fn FRAC_3PI_4() -> Self {
        Self::from_radians(T::FRAC_PI_4() * T::three())
    }

    pub fn FRAC_5PI_4() -> Self {
        Self::from_radians(T::FRAC_PI_4() * T::five())
    }

    pub fn FRAC_7PI_4() -> Self {
        Self::from_radians(T::FRAC_PI_4() * T::seven())
    }

    pub fn FRAC_PI_6() -> Self {
        Self::from_radians(T::FRAC_PI_6())
    }

    pub fn FRAC_PI_8() -> Self {
        Self::from_radians(T::FRAC_PI_8())
    }

    pub fn PI() -> Self {
        Self::from_radians(T::PI())
    }

    pub fn TAU() -> Self {
        Self::from_radians(T::PI()) * T::two()
    }

    fn half_turn_degrees() -> T {
        en::cast::<T, _>(180)
    }

    pub fn from_degrees(degrees: T) -> Self {
        Self::from_radians(degrees * T::PI() / Self::half_turn_degrees())
    }

    pub fn from_radians(radians: T) -> Self {
        Self { radians }
    }

    /// Returns an `Angle` in the range `(-PI,PI]`.
    pub fn from_xy(x: T, y: T) -> Self {
        Self::from_radians((-y).atan2(x))
    }

    /// Returns an `Angle` in the range `[-PI,PI)`.
    pub fn normalize(self) -> Self {
        let radians =
            self.radians - T::TAU() * (self.radians / T::TAU() + T::one().halved()).floor();
        Self::from_radians(radians)
    }

    pub fn radians(self) -> T {
        self.radians
    }

    pub fn degrees(self) -> T {
        self.radians / T::PI() * Self::half_turn_degrees()
    }

    pub fn unit_vector(self) -> Vector<T> {
        let (y, x) = self.radians.sin_cos();
        Vector::new(x, -y)
    }

    pub fn sin(self) -> T {
        self.radians.sin()
    }

    pub fn cos(self) -> T {
        self.radians.cos()
    }

    pub fn sin_cos(self) -> (T, T) {
        self.radians.sin_cos()
    }

    pub fn tan(self) -> T {
        self.radians.tan()
    }

    pub fn map_radians<U: en::Float>(self, f: impl FnOnce(T) -> U) -> Angle<U> {
        Angle::from_radians(f(self.radians()))
    }

    pub fn map_degrees<U: en::Float>(self, f: impl FnOnce(T) -> U) -> Angle<U> {
        Angle::from_degrees(f(self.degrees()))
    }

    pub fn cast<U: en::Float>(&self) -> Angle<U> {
        self.map_radians(en::cast)
    }

    pub fn to_f32(self) -> Angle<f32> {
        self.cast()
    }

    pub fn to_f64(self) -> Angle<f64> {
        self.cast()
    }
}

impl<T: en::Float> Add for Angle<T> {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        Angle::from_radians(self.radians + rhs.radians)
    }
}

impl<T: en::Float> AddAssign for Angle<T> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs
    }
}

impl<T: en::Float> Sub for Angle<T> {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        Angle::from_radians(self.radians - rhs.radians)
    }
}

impl<T: en::Float> SubAssign for Angle<T> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs
    }
}

impl<T: en::Float> Mul<T> for Angle<T> {
    type Output = Self;
    fn mul(self, rhs: T) -> Self::Output {
        Angle::from_radians(self.radians * rhs)
    }
}

impl<T: en::Float> MulAssign<T> for Angle<T> {
    fn mul_assign(&mut self, rhs: T) {
        *self = *self * rhs
    }
}

impl<T: en::Float> Div<T> for Angle<T> {
    type Output = Self;
    fn div(self, rhs: T) -> Self::Output {
        Angle::from_radians(self.radians / rhs)
    }
}

impl<T: en::Float> DivAssign<T> for Angle<T> {
    fn div_assign(&mut self, rhs: T) {
        *self = *self / rhs
    }
}

impl<T: en::Float> Neg for Angle<T> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        Angle::from_radians(-self.radians)
    }
}

impl<T: en::Float> From<Cardinal> for Angle<T> {
    fn from(cardinal: Cardinal) -> Angle<T> {
        cardinal.angle()
    }
}

impl<T: en::Float> From<Direction> for Angle<T> {
    fn from(direction: Direction) -> Angle<T> {
        direction.angle()
    }
}

#[cfg(feature = "euclid")]
impl<T> From<Angle<T>> for euclid::Angle<T> {
    fn from(a: Angle<T>) -> euclid::Angle<T> {
        Self::radians(a.radians)
    }
}

#[cfg(feature = "euclid")]
impl<T> From<euclid::Angle<T>> for Angle<T> {
    fn from(a: euclid::Angle<T>) -> Angle<T> {
        Self { radians: a.radians }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::assert_approx_eq;

    #[test]
    fn normalize() {
        let x = Angle::from_radians(3.1).normalize();
        assert_approx_eq!(x.radians, Angle::from_radians(3.1).radians);
        let x = Angle::from_radians(-3.1).normalize();
        assert_approx_eq!(x.radians, Angle::from_radians(-3.1).radians);
        let x = Angle::from_radians(0.1).normalize();
        assert_approx_eq!(x.radians, Angle::from_radians(0.1).radians);
        let x = Angle::from_radians(-0.1).normalize();
        assert_approx_eq!(x.radians, Angle::from_radians(-0.1).radians);
        let x = Angle::from_radians(0.0).normalize();
        assert_approx_eq!(x.radians, Angle::from_radians(0.0).radians);
        let x = (-Angle::PI()).normalize();
        assert_approx_eq!(x.radians, -Angle::<f32>::PI().radians);
        let x = Angle::PI().normalize();
        assert_approx_eq!(x.radians, -Angle::<f32>::PI().radians);

        let x = Angle::from_radians(3.2).normalize();
        assert_approx_eq!(x.radians, Angle::from_radians(-3.0831854).radians);
        let x = Angle::from_radians(-3.2).normalize();
        assert_approx_eq!(x.radians, Angle::from_radians(3.0831854).radians);
    }

    #[test]
    fn degrees() {
        let deg = 360.0;
        let x = Angle::from_degrees(deg);
        assert_eq!(x, Angle::TAU());
        assert_eq!(x.degrees(), deg);
    }

    #[test]
    fn unit_vector() {
        macro_rules! check {
            ($vec:expr, $deg:expr) => {
                let a = Angle::from_degrees($deg).normalize();
                let v_act = a.unit_vector();
                let v_exp = Vector::from_tuple($vec).normalize();
                assert_approx_eq!(
                    v_act.dx,
                    v_exp.dx,
                    "angle didn't produce expected unit vector dx"
                );
                assert_approx_eq!(
                    v_act.dy,
                    v_exp.dy,
                    "angle didn't produce expected unit vector dy"
                );
                assert_approx_eq!(
                    a.degrees(),
                    v_act.angle().normalize().degrees(),
                    "angle lost in conversion"
                );
            };
        }
        check!((1.0, 0.0), 0.0);
        check!((1.0, 0.0), 360.0);
        check!((1.0, -1.0), 45.0);
        check!((0.0, -1.0), 90.0);
        check!((0.0, -1.0), -270.0);
        check!((-1.0, -1.0), 135.0);
        check!((-1.0, 0.0), 180.0);
        check!((-1.0, 0.0), -180.0);
        check!((-1.0, 1.0), -135.0);
        check!((0.0, 1.0), -90.0);
        check!((1.0, 1.0), -45.0);
    }
}