1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
// This file is part of Gear.
// Copyright (C) 2021-2023 Gear Technologies Inc.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//! Work with WASM program memory in backends.
use crate::{
runtime::RunFallibleError, BackendExternalities, BackendSyscallError, TrapExplanation,
UndefinedTerminationReason, UnrecoverableMemoryError,
};
use alloc::vec::Vec;
use core::{
fmt::Debug,
marker::PhantomData,
mem,
mem::{size_of, MaybeUninit},
result::Result,
slice,
};
use gear_core::{
buffer::{RuntimeBuffer, RuntimeBufferSizeError},
memory::{Memory, MemoryError, MemoryInterval},
};
use gear_core_errors::MemoryError as FallibleMemoryError;
use num_enum::{IntoPrimitive, TryFromPrimitive};
use scale_info::scale::{Decode, DecodeAll, MaxEncodedLen};
/// Memory access error during sys-call that lazy-pages have caught.
/// 0 index is reserved for an ok result.
#[derive(Debug, Clone, IntoPrimitive, TryFromPrimitive)]
#[repr(u8)]
pub enum ProcessAccessError {
OutOfBounds = 1,
GasLimitExceeded = 2,
}
#[derive(Debug, Clone, derive_more::From)]
pub enum MemoryAccessError {
Memory(MemoryError),
ProcessAccess(ProcessAccessError),
RuntimeBuffer(RuntimeBufferSizeError),
// TODO: remove #2164
Decode,
}
impl BackendSyscallError for MemoryAccessError {
fn into_termination_reason(self) -> UndefinedTerminationReason {
match self {
MemoryAccessError::ProcessAccess(ProcessAccessError::OutOfBounds)
| MemoryAccessError::Memory(MemoryError::AccessOutOfBounds) => {
TrapExplanation::UnrecoverableExt(
UnrecoverableMemoryError::AccessOutOfBounds.into(),
)
.into()
}
MemoryAccessError::RuntimeBuffer(RuntimeBufferSizeError) => {
TrapExplanation::UnrecoverableExt(
UnrecoverableMemoryError::RuntimeAllocOutOfBounds.into(),
)
.into()
}
// TODO: In facts thats legacy from lazy pages V1 implementation,
// previously it was able to figure out that gas ended up in
// pre-process charges: now we need actual counter type, so
// it will be parsed and handled further (issue #3018).
MemoryAccessError::ProcessAccess(ProcessAccessError::GasLimitExceeded) => {
UndefinedTerminationReason::ProcessAccessErrorResourcesExceed
}
MemoryAccessError::Decode => unreachable!(),
}
}
fn into_run_fallible_error(self) -> RunFallibleError {
match self {
MemoryAccessError::Memory(MemoryError::AccessOutOfBounds)
| MemoryAccessError::ProcessAccess(ProcessAccessError::OutOfBounds) => {
RunFallibleError::FallibleExt(FallibleMemoryError::AccessOutOfBounds.into())
}
MemoryAccessError::RuntimeBuffer(RuntimeBufferSizeError) => {
RunFallibleError::FallibleExt(FallibleMemoryError::RuntimeAllocOutOfBounds.into())
}
e => RunFallibleError::UndefinedTerminationReason(e.into_termination_reason()),
}
}
}
/// Memory accesses recorder/registrar, which allow to register new accesses.
pub trait MemoryAccessRecorder {
/// Register new read access.
fn register_read(&mut self, ptr: u32, size: u32) -> WasmMemoryRead;
/// Register new read static size type access.
fn register_read_as<T: Sized>(&mut self, ptr: u32) -> WasmMemoryReadAs<T>;
/// Register new read decoded type access.
fn register_read_decoded<T: Decode + MaxEncodedLen>(
&mut self,
ptr: u32,
) -> WasmMemoryReadDecoded<T>;
/// Register new write access.
fn register_write(&mut self, ptr: u32, size: u32) -> WasmMemoryWrite;
/// Register new write static size access.
fn register_write_as<T: Sized>(&mut self, ptr: u32) -> WasmMemoryWriteAs<T>;
}
pub trait MemoryOwner {
/// Read from owned memory to new byte vector.
fn read(&mut self, read: WasmMemoryRead) -> Result<Vec<u8>, MemoryAccessError>;
/// Read from owned memory to new object `T`.
fn read_as<T: Sized>(&mut self, read: WasmMemoryReadAs<T>) -> Result<T, MemoryAccessError>;
/// Read from owned memory and decoded data into object `T`.
fn read_decoded<T: Decode + MaxEncodedLen>(
&mut self,
read: WasmMemoryReadDecoded<T>,
) -> Result<T, MemoryAccessError>;
/// Write data from `buff` to owned memory.
fn write(&mut self, write: WasmMemoryWrite, buff: &[u8]) -> Result<(), MemoryAccessError>;
/// Write data from `obj` to owned memory.
fn write_as<T: Sized>(
&mut self,
write: WasmMemoryWriteAs<T>,
obj: T,
) -> Result<(), MemoryAccessError>;
}
/// Memory access manager. Allows to pre-register memory accesses,
/// and pre-process, them together. For example:
/// ```ignore
/// let manager = MemoryAccessManager::default();
/// let read1 = manager.new_read(10, 20);
/// let read2 = manager.new_read_as::<u128>(100);
/// let write1 = manager.new_write_as::<usize>(190);
///
/// // First call of read or write interface leads to pre-processing of
/// // all already registered memory accesses, and clear `self.reads` and `self.writes`.
/// let value_u128 = manager.read_as(read2).unwrap();
///
/// // Next calls do not lead to access pre-processing.
/// let value1 = manager.read().unwrap();
/// manager.write_as(write1, 111).unwrap();
/// ```
#[derive(Debug)]
pub struct MemoryAccessManager<Ext> {
// Contains non-zero length intervals only.
pub(crate) reads: Vec<MemoryInterval>,
pub(crate) writes: Vec<MemoryInterval>,
pub(crate) _phantom: PhantomData<Ext>,
}
impl<Ext> Default for MemoryAccessManager<Ext> {
fn default() -> Self {
Self {
reads: Vec::new(),
writes: Vec::new(),
_phantom: PhantomData,
}
}
}
impl<Ext> MemoryAccessRecorder for MemoryAccessManager<Ext> {
fn register_read(&mut self, ptr: u32, size: u32) -> WasmMemoryRead {
if size > 0 {
self.reads.push(MemoryInterval { offset: ptr, size });
}
WasmMemoryRead { ptr, size }
}
fn register_read_as<T: Sized>(&mut self, ptr: u32) -> WasmMemoryReadAs<T> {
let size = size_of::<T>() as u32;
if size > 0 {
self.reads.push(MemoryInterval { offset: ptr, size });
}
WasmMemoryReadAs {
ptr,
_phantom: PhantomData,
}
}
fn register_read_decoded<T: Decode + MaxEncodedLen>(
&mut self,
ptr: u32,
) -> WasmMemoryReadDecoded<T> {
let size = T::max_encoded_len() as u32;
if size > 0 {
self.reads.push(MemoryInterval { offset: ptr, size });
}
WasmMemoryReadDecoded {
ptr,
_phantom: PhantomData,
}
}
fn register_write(&mut self, ptr: u32, size: u32) -> WasmMemoryWrite {
if size > 0 {
self.writes.push(MemoryInterval { offset: ptr, size });
}
WasmMemoryWrite { ptr, size }
}
fn register_write_as<T: Sized>(&mut self, ptr: u32) -> WasmMemoryWriteAs<T> {
let size = size_of::<T>() as u32;
if size > 0 {
self.writes.push(MemoryInterval { offset: ptr, size });
}
WasmMemoryWriteAs {
ptr,
_phantom: PhantomData,
}
}
}
impl<Ext: BackendExternalities> MemoryAccessManager<Ext> {
/// Call pre-processing of registered memory accesses. Clear `self.reads` and `self.writes`.
pub(crate) fn pre_process_memory_accesses(
&mut self,
gas_counter: &mut u64,
) -> Result<(), MemoryAccessError> {
if self.reads.is_empty() && self.writes.is_empty() {
return Ok(());
}
let res = Ext::pre_process_memory_accesses(&self.reads, &self.writes, gas_counter);
self.reads.clear();
self.writes.clear();
res.map_err(Into::into)
}
/// Pre-process registered accesses if need and read data from `memory` to `buff`.
fn read_into_buf<M: Memory>(
&mut self,
memory: &M,
ptr: u32,
buff: &mut [u8],
gas_counter: &mut u64,
) -> Result<(), MemoryAccessError> {
self.pre_process_memory_accesses(gas_counter)?;
memory.read(ptr, buff).map_err(Into::into)
}
/// Pre-process registered accesses if need and read data from `memory` into new vector.
pub fn read<M: Memory>(
&mut self,
memory: &M,
read: WasmMemoryRead,
gas_counter: &mut u64,
) -> Result<Vec<u8>, MemoryAccessError> {
let buff = if read.size == 0 {
Vec::new()
} else {
let mut buff = RuntimeBuffer::try_new_default(read.size as usize)?.into_vec();
self.read_into_buf(memory, read.ptr, &mut buff, gas_counter)?;
buff
};
Ok(buff)
}
/// Pre-process registered accesses if need and read and decode data as `T` from `memory`.
pub fn read_decoded<M: Memory, T: Decode + MaxEncodedLen>(
&mut self,
memory: &M,
read: WasmMemoryReadDecoded<T>,
gas_counter: &mut u64,
) -> Result<T, MemoryAccessError> {
let size = T::max_encoded_len();
let buff = if size == 0 {
Vec::new()
} else {
let mut buff = RuntimeBuffer::try_new_default(size)?.into_vec();
self.read_into_buf(memory, read.ptr, &mut buff, gas_counter)?;
buff
};
let decoded = T::decode_all(&mut &buff[..]).map_err(|_| MemoryAccessError::Decode)?;
Ok(decoded)
}
/// Pre-process registered accesses if need and read data as `T` from `memory`.
pub fn read_as<M: Memory, T: Sized>(
&mut self,
memory: &M,
read: WasmMemoryReadAs<T>,
gas_counter: &mut u64,
) -> Result<T, MemoryAccessError> {
self.pre_process_memory_accesses(gas_counter)?;
read_memory_as(memory, read.ptr).map_err(Into::into)
}
/// Pre-process registered accesses if need and write data from `buff` to `memory`.
pub fn write<M: Memory>(
&mut self,
memory: &mut M,
write: WasmMemoryWrite,
buff: &[u8],
gas_counter: &mut u64,
) -> Result<(), MemoryAccessError> {
if buff.len() != write.size as usize {
unreachable!("Backend bug error: buffer size is not equal to registered buffer size");
}
if write.size == 0 {
Ok(())
} else {
self.pre_process_memory_accesses(gas_counter)?;
memory.write(write.ptr, buff).map_err(Into::into)
}
}
/// Pre-process registered accesses if need and write `obj` data to `memory`.
pub fn write_as<M: Memory, T: Sized>(
&mut self,
memory: &mut M,
write: WasmMemoryWriteAs<T>,
obj: T,
gas_counter: &mut u64,
) -> Result<(), MemoryAccessError> {
self.pre_process_memory_accesses(gas_counter)?;
write_memory_as(memory, write.ptr, obj).map_err(Into::into)
}
}
/// Writes object in given memory as bytes.
fn write_memory_as<T: Sized>(
memory: &mut impl Memory,
ptr: u32,
obj: T,
) -> Result<(), MemoryError> {
let size = mem::size_of::<T>();
if size > 0 {
// # Safety:
//
// Given object is `Sized` and we own them in the context of calling this
// function (it's on stack), it's safe to take ptr on the object and
// represent it as slice. Object will be dropped after `memory.write`
// finished execution and no one will rely on this slice.
//
// Bytes in memory always stored continuously and without paddings, properly
// aligned due to `[repr(C, packed)]` attribute of the types we use as T.
let slice = unsafe { slice::from_raw_parts(&obj as *const T as *const u8, size) };
memory.write(ptr, slice)
} else {
Ok(())
}
}
/// Reads bytes from given pointer to construct type T from them.
fn read_memory_as<T: Sized>(memory: &impl Memory, ptr: u32) -> Result<T, MemoryError> {
let mut buf = MaybeUninit::<T>::uninit();
let size = mem::size_of::<T>();
if size > 0 {
// # Safety:
//
// Usage of mutable slice is safe for the same reason from `write_memory_as`.
// `MaybeUninit` is presented on stack as a contiguous sequence of bytes.
//
// It's also safe to construct T from any bytes, because we use the fn
// only for reading primitive const-size types that are `[repr(C)]`,
// so they always represented from sequence of bytes.
//
// Bytes in memory always stored continuously and without paddings, properly
// aligned due to `[repr(C, packed)]` attribute of the types we use as T.
let mut_slice = unsafe { slice::from_raw_parts_mut(buf.as_mut_ptr() as *mut u8, size) };
memory.read(ptr, mut_slice)?;
}
// # Safety:
//
// Assuming init is always safe here due to the fact that we read proper
// amount of bytes from the wasm memory, which is never uninited: they may
// be filled by zeroes or some trash (valid for our primitives used as T),
// but always exist.
Ok(unsafe { buf.assume_init() })
}
/// Read static size type access wrapper.
pub struct WasmMemoryReadAs<T> {
pub(crate) ptr: u32,
pub(crate) _phantom: PhantomData<T>,
}
/// Read decoded type access wrapper.
pub struct WasmMemoryReadDecoded<T: Decode + MaxEncodedLen> {
pub(crate) ptr: u32,
pub(crate) _phantom: PhantomData<T>,
}
/// Read access wrapper.
pub struct WasmMemoryRead {
pub(crate) ptr: u32,
pub(crate) size: u32,
}
/// Write static size type access wrapper.
pub struct WasmMemoryWriteAs<T> {
pub(crate) ptr: u32,
pub(crate) _phantom: PhantomData<T>,
}
/// Write access wrapper.
pub struct WasmMemoryWrite {
pub(crate) ptr: u32,
pub(crate) size: u32,
}