1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cell::{Cell, RefCell};
use core::mem;
use core::ptr::NonNull;
use crate::arena::ArenaParameters;
use crate::collect::Collect;
use crate::types::{GcBox, GcBoxHeader, GcBoxInner, GcColor, Invariant};
/// Handle value given by arena callbacks during construction and mutation. Allows allocating new
/// `Gc` pointers and internally mutating values held by `Gc` pointers.
#[repr(transparent)]
pub struct Mutation<'gc> {
context: Context,
_invariant: Invariant<'gc>,
}
impl<'gc> Mutation<'gc> {
#[inline]
pub(crate) fn allocate<T: 'gc + Collect>(&self, t: T) -> NonNull<GcBoxInner<T>> {
self.context.allocate(t)
}
#[inline]
pub(crate) fn write_barrier(&self, gc_box: GcBox) {
self.context.write_barrier(gc_box)
}
#[inline]
pub(crate) fn upgrade(&self, gc_box: GcBox) -> bool {
self.context.upgrade(gc_box)
}
}
/// Handle value given by arena callbacks during garbage collection, which must be passed through
/// `Collect::trace` implementations.
#[repr(transparent)]
pub struct Collection {
context: Context,
}
impl Collection {
#[inline]
pub(crate) fn trace(&self, gc_box: GcBox) {
self.context.trace(gc_box)
}
#[inline]
pub(crate) fn trace_weak(&self, gc_box: GcBox) {
self.context.trace_weak(gc_box)
}
}
pub(crate) struct Context {
parameters: ArenaParameters,
phase: Cell<Phase>,
root_needs_trace: Cell<bool>,
total_allocated: Cell<usize>,
remembered_size: Cell<usize>,
wakeup_total: Cell<usize>,
allocation_debt: Cell<f64>,
// A linked list of all allocated `GcBox`es.
all: Cell<Option<GcBox>>,
// A copy of the head of `all` at the end of `Phase::Propagate`.
// During `Phase::Sweep`, we free all white allocations on this list.
// Any allocations created *during* `Phase::Sweep` will be added to `all`,
// but `sweep` will *not* be updated. This ensures that we keep allocations
// alive until we've had a chance to trace them.
sweep: Cell<Option<GcBox>>,
// The most recent black object that we encountered during `Phase::Sweep`.
// When we free objects, we update this `GcBox.next` to remove them from
// the linked list.
sweep_prev: Cell<Option<GcBox>>,
/// A queue of gray objects, used during `Phase::Propagate`.
/// This holds traceable objects that have yet to be traced.
/// When we enter `Phase::Propagate`, we push `root` to this queue.
gray: RefCell<Vec<GcBox>>,
// A queue of gray objects that became gray as a result
// of a `write_barrier` call.
gray_again: RefCell<Vec<GcBox>>,
}
impl Drop for Context {
fn drop(&mut self) {
struct DropAll(Option<GcBox>);
impl Drop for DropAll {
fn drop(&mut self) {
if let Some(gc_box) = self.0.take() {
let mut drop_resume = DropAll(Some(gc_box));
while let Some(gc_box) = drop_resume.0.take() {
drop_resume.0 = gc_box.header().next();
// SAFETY: the context owns its GC'd objects
unsafe { free_gc_box(gc_box) }
}
}
}
}
DropAll(self.all.get());
}
}
impl Context {
pub(crate) unsafe fn new(parameters: ArenaParameters) -> Context {
Context {
parameters,
phase: Cell::new(Phase::Propagate),
root_needs_trace: Cell::new(true),
total_allocated: Cell::new(0),
remembered_size: Cell::new(0),
wakeup_total: Cell::new(0),
allocation_debt: Cell::new(0.0),
all: Cell::new(None),
sweep: Cell::new(None),
sweep_prev: Cell::new(None),
gray: RefCell::new(Vec::new()),
gray_again: RefCell::new(Vec::new()),
}
}
#[inline]
pub(crate) unsafe fn mutation_context<'gc>(&self) -> &Mutation<'gc> {
mem::transmute::<&Self, &Mutation>(&self)
}
#[inline]
pub(crate) fn allocation_debt(&self) -> f64 {
self.allocation_debt.get()
}
#[inline]
pub(crate) fn total_allocated(&self) -> usize {
self.total_allocated.get()
}
#[inline]
pub(crate) fn remembered_size(&self) -> usize {
self.remembered_size.get()
}
// If the garbage collector is currently in the sleep phase,
// add the root to the gray queue and transition to the `Propagate` phase.
#[inline]
pub(crate) fn wake(&self) {
if self.phase.get() == Phase::Sleep {
self.phase.set(Phase::Propagate);
self.root_needs_trace.set(true);
}
}
#[inline]
pub(crate) fn root_barrier(&self) {
if self.phase.get() == Phase::Propagate {
self.root_needs_trace.set(true);
}
}
// Do some collection work until we have either reached the target amount of work or are in the
// sleeping gc phase. The unit of "work" here is a byte count of objects either turned black
// or freed, so to completely collect a heap with 1000 bytes of objects should take 1000 units
// of work, whatever percentage of them are live or not. Returns the amount of work actually
// performed, which may be less if we are entering the sleep phase.
//
// In order for this to be safe, at the time of call no `Gc` pointers can be live that are not
// reachable from the given root object.
pub(crate) unsafe fn do_collection<R: Collect>(&self, root: &R, work: f64) -> f64 {
self.do_collection_inner(root, work)
}
fn do_collection_inner<R: Collect>(&self, root: &R, work: f64) -> f64 {
let mut work_done = 0.0;
let cc = unsafe { mem::transmute::<&Self, &Collection>(self) };
while work > work_done {
match self.phase.get() {
Phase::Propagate => {
// We look for an object first in the normal gray queue, then the "gray again"
// queue. Objects from the normal gray queue count as regular work, but objects
// which are gray a second time have already been counted as work, so we don't
// double count them. Processing "gray again" objects later also gives them more
// time to be mutated again without triggering another write barrier.
let next_gray = if let Some(gc_box) = self.gray.borrow_mut().pop() {
let gray_size = gc_box.header().size_of_box() as f64;
work_done += gray_size;
self.allocation_debt
.set((self.allocation_debt.get() - gray_size).max(0.0));
Some(gc_box)
} else if let Some(gc_box) = self.gray_again.borrow_mut().pop() {
Some(gc_box)
} else {
None
};
if let Some(gc_box) = next_gray {
// If we have an object in the gray queue, take one, trace it, and turn it
// black.
// SAFETY: we know gray objects are always live.
// Our `Collect::trace` call may panic, and if it does the object will be
// lost from the gray queue but potentially incompletely traced. By catching
// a panic during `Arena::collect()`, this could lead to memory unsafety.
//
// So, if the `Collect::trace` call panics, we need to add the popped object
// back to the `gray_again` queue. If the panic is caught, this will maybe
// give it some time to not panic before attempting to collect it again, and
// also this doesn't invalidate the collection debt math.
struct DropGuard<'a> {
panicking: bool,
this: &'a Context,
gc_box: GcBox,
}
impl<'a> Drop for DropGuard<'a> {
fn drop(&mut self) {
if self.panicking {
self.this.gray_again.borrow_mut().push(self.gc_box);
}
}
}
let mut guard = DropGuard {
panicking: true,
this: self,
gc_box,
};
unsafe { gc_box.trace_value(cc) }
guard.panicking = false;
gc_box.header().set_color(GcColor::Black);
} else if self.root_needs_trace.get() {
// We treat the root object as gray if `root_needs_trace` is set, and we
// process it at the end of the gray queue for the same reason as the "gray
// again" objects.
root.trace(cc);
self.root_needs_trace.set(false);
} else {
// If we have no gray objects left, we enter the sweep phase.
self.phase.set(Phase::Sweep);
// Set `sweep to the current head of our `all` linked list. Any new allocations
// during the newly-entered `Phase:Sweep` will update `all`, but will *not*
// be reachable from `this.sweep`.
self.sweep.set(self.all.get());
}
}
Phase::Sweep => {
if let Some(mut sweep) = self.sweep.get() {
let sweep_header = sweep.header();
let next_box = sweep_header.next();
self.sweep.set(next_box);
match sweep_header.color() {
// If the next object in the sweep portion of the main list is white, we
// need to remove it from the main object list and destruct it.
GcColor::White => {
if let Some(sweep_prev) = self.sweep_prev.get() {
sweep_prev.header().set_next(next_box);
} else {
// If `sweep_prev` is None, then the sweep pointer is also the
// beginning of the main object list, so we need to adjust it.
debug_assert_eq!(self.all.get(), Some(sweep));
self.all.set(next_box);
}
let sweep_size = sweep_header.size_of_box();
self.total_allocated
.set(self.total_allocated.get() - sweep_size);
work_done += sweep_size as f64;
self.allocation_debt
.set((self.allocation_debt.get() - sweep_size as f64).max(0.0));
// SAFETY: this object is white, and wasn't traced by a `GcWeak` during this cycle,
// meaning it cannot have either strong or weak pointers, so we can drop the whole object.
unsafe { free_gc_box(sweep) }
}
// Keep the `GcBox` as part of the linked list if we traced a weak pointer
// to it. The weak pointer still needs access to the `GcBox` to be able to
// check if the object is still alive. We can only deallocate the `GcBox`,
// once there are no weak pointers left.
GcColor::WhiteWeak => {
self.sweep_prev.set(Some(sweep));
sweep_header.set_color(GcColor::White);
if sweep_header.is_live() {
sweep_header.set_live(false);
// SAFETY: Since this object is white, that means there are no more strong pointers
// to this object, only weak pointers, so we can safely drop its contents.
unsafe { sweep.drop_in_place() }
}
}
// If the next object in the sweep portion of the main list is black, we
// need to keep it but turn it back white.
GcColor::Black => {
self.sweep_prev.set(Some(sweep));
self.remembered_size
.set(self.remembered_size.get() + sweep_header.size_of_box());
sweep_header.set_color(GcColor::White);
}
// No gray objects should be in this part of the main list, they should be
// added to the beginning of the list before the sweep pointer, so it should
// not be possible for us to encounter them here.
GcColor::Gray => {
debug_assert!(false, "unexpected gray object in sweep list")
}
}
} else {
// We are done sweeping, so enter the sleeping phase.
self.sweep_prev.set(None);
self.phase.set(Phase::Sleep);
// Do not let debt or remembered size accumulate across cycles.
// When we enter sleep, zero them out.
self.allocation_debt.set(0.0);
let remembered_size = self.remembered_size.replace(0);
let sleep =
f64_to_usize(remembered_size as f64 * self.parameters.pause_factor)
.min(self.parameters.min_sleep);
self.wakeup_total.set(self.total_allocated.get() + sleep);
}
}
Phase::Sleep => break,
}
}
work_done
}
fn allocate<T: Collect>(&self, t: T) -> NonNull<GcBoxInner<T>> {
let header = GcBoxHeader::new::<T>();
header.set_next(self.all.get());
header.set_live(true);
header.set_needs_trace(T::needs_trace());
let alloc_size = header.size_of_box();
self.total_allocated
.set(self.total_allocated.get() + alloc_size);
if self.phase.get() == Phase::Sleep && self.total_allocated.get() > self.wakeup_total.get()
{
self.wake();
}
if self.phase.get() != Phase::Sleep {
self.allocation_debt.set(
self.allocation_debt.get()
+ alloc_size as f64
+ alloc_size as f64 / self.parameters.timing_factor,
);
}
// Make the generated code easier to optimize into `T` being constructed in place or at the
// very least only memcpy'd once.
// For more information, see: https://github.com/kyren/gc-arena/pull/14
let (gc_box, ptr) = unsafe {
let mut uninitialized = Box::new(mem::MaybeUninit::<GcBoxInner<T>>::uninit());
core::ptr::write(uninitialized.as_mut_ptr(), GcBoxInner::new(header, t));
let ptr = NonNull::new_unchecked(Box::into_raw(uninitialized) as *mut GcBoxInner<T>);
(GcBox::erase(ptr), ptr)
};
self.all.set(Some(gc_box));
if self.phase.get() == Phase::Sweep && self.sweep_prev.get().is_none() {
self.sweep_prev.set(self.all.get());
}
ptr
}
#[inline]
fn write_barrier(&self, gc_box: GcBox) {
// During the propagating phase, if we are mutating a black object, we may add a white
// object to it and invalidate the invariant that black objects may not point to white
// objects. Turn black obejcts to gray to prevent this.
let header = gc_box.header();
if self.phase.get() == Phase::Propagate && header.color() == GcColor::Black {
header.set_color(GcColor::Gray);
// Outline the actual enqueueing code (which is somewhat expensive and won't be
// executed often) to promote the inlining of the write barrier.
#[cold]
fn enqueue(this: &Context, gc_box: GcBox) {
this.gray_again.borrow_mut().push(gc_box);
}
enqueue(&self, gc_box);
}
}
#[inline]
fn trace(&self, gc_box: GcBox) {
let header = gc_box.header();
match header.color() {
GcColor::Black | GcColor::Gray => {}
GcColor::White | GcColor::WhiteWeak => {
if header.needs_trace() {
// A white traceable object is not in the gray queue, becomes gray and enters
// the normal gray queue.
header.set_color(GcColor::Gray);
self.gray.borrow_mut().push(gc_box);
} else {
// A white object that doesn't need tracing simply becomes black.
header.set_color(GcColor::Black);
}
}
}
}
#[inline]
fn trace_weak(&self, gc_box: GcBox) {
let header = gc_box.header();
if header.color() == GcColor::White {
header.set_color(GcColor::WhiteWeak);
}
}
/// Determines whether or not a Gc pointer is safe to be upgraded.
/// This is used by weak pointers to determine if it can safely upgrade to a strong pointer.
#[inline]
fn upgrade(&self, gc_box: GcBox) -> bool {
let header = gc_box.header();
// This object has already been freed, definitely not safe to upgrade.
if !header.is_live() {
return false;
}
// Consider the different possible phases of the GC:
// * In `Phase::Sleep`, the GC is not running, so we can upgrade.
// If the newly-created `Gc` or `GcCell` survives the current `arena.mutate`
// call, then the situtation is equivalent to having copied an existing `Gc`/`GcCell`,
// or having created a new allocation.
//
// * In `Phase::Propagate`:
// If the newly-created `Gc` or `GcCell` survives the current `arena.mutate`
// call, then it must have been stored somewhere, triggering a write barrier.
// This will ensure that the new `Gc`/`GcCell` gets traced (if it's now reachable)
// before we transition to `Phase::Sweep`.
//
// * In `Phase::Sweep`:
// If the allocation is `WhiteWeak`, then it's impossile for it to have been freshly-created
// during this `Phase::Sweep`. `WhiteWeak` is only set when a white `GcWeak/GcWeakCell` is traced.
// A `GcWeak/GcWeakCell` must be created from an existing `Gc/GcCell` via `downgrade()`, so
// `WhiteWeak` means that a `GcWeak` / `GcWeakCell` existed during the last `Phase::Propagate.`
//
// Therefore, a `WhiteWeak` object is guaranteed to be deallocated during this `Phase::Sweep`,
// and we must not upgrade it.
//
// Conversely, it's always safe to upgrade a white object that is not `WhiteWeak`.
// In order to call `upgrade`, you must have a `GcWeak/GcWeakCell`. Since it is not `WhiteWeak`
// there cannot have been any `GcWeak/GcWeakCell`s during the last `Phase::Propagate`, so
// the weak pointer must have been created during this `Phase::Sweep`.
// This is only possible if the underlying allocation was freshly-created - if the allocation existed during
// `Phase::Propagate` but was not traced, then it must have been unreachable,
// which means that the user wouldn't have been able to call `downgrade`.
// Therefore, we can safely upgrade, knowing that the object will not be freed
// during this phase, despite being white.
if self.phase.get() == Phase::Sweep && header.color() == GcColor::WhiteWeak {
return false;
}
true
}
}
// SAFETY: the gc_box must never be accessed after calling this function.
unsafe fn free_gc_box<'gc>(mut gc_box: GcBox) {
if gc_box.header().is_live() {
// If the alive flag is set, that means we haven't dropped the inner value of this object,
gc_box.drop_in_place();
}
gc_box.dealloc();
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
enum Phase {
Propagate,
Sweep,
Sleep,
}
/// Rounds a floating point number to an unsigned integer.
///
/// If the floating point number is outside the bounds of the unsigned
/// integer, the number is clamped.
///
/// This methods works in no_std environments too.
#[inline]
fn f64_to_usize(input: f64) -> usize {
// As per the Rustonomicon, the cast to usize is truncating.
// TODO: Use f64::round when that is available in no_std. See:
// https://github.com/rust-lang/rust/issues/50145
(input + 0.5) as usize
}
#[cfg(test)]
mod test {
use super::f64_to_usize;
#[test]
fn test_clamp_f64() {
assert_eq!(f64_to_usize(f64::MIN), 0);
assert_eq!(f64_to_usize(-100.0), 0);
assert_eq!(f64_to_usize(-1.0), 0);
assert_eq!(f64_to_usize(-0.6), 0);
assert_eq!(f64_to_usize(0.0), 0);
assert_eq!(f64_to_usize(0.4), 0);
assert_eq!(f64_to_usize(0.5 - f64::EPSILON), 0);
assert_eq!(f64_to_usize(0.5), 1);
assert_eq!(f64_to_usize(0.6), 1);
assert_eq!(f64_to_usize(1.0), 1);
assert_eq!(f64_to_usize(100.0), 100);
assert_eq!(f64_to_usize(usize::MAX as f64), usize::MAX);
assert_eq!(f64_to_usize(f64::MAX), usize::MAX);
}
// This tests loss of precision, which only happens when `usize::MAX`
// is large enough. when `usize` is `u32`, it's small enough that we
// don't lose precision, so only run this test on 64-bit platforms.
#[cfg(all(feature = "std", target_pointer_width = "64"))]
#[test]
fn test_clamp_f64_precision() {
fn std_impl(input: f64) -> usize {
input.round().min(usize::MAX as f64) as usize
}
// Precision is lost both using the no_std impl and the std impl
assert_eq!(std_impl((usize::MAX - 1) as f64) as usize, usize::MAX);
assert_eq!(f64_to_usize((usize::MAX - 1) as f64), usize::MAX);
}
}