ganesh/algorithms/
nelder_mead.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
use std::fmt::Debug;

use nalgebra::{DMatrix, DVector};

use crate::{algorithms::Point, Algorithm, Bound, Float, Function, Status};

/// Gives a method for constructing a simplex.
#[derive(Debug, Clone)]
pub enum SimplexConstructionMethod {
    /// Creates a simplex by starting at the given `x0` and stepping a distance of `+simplex_size`
    /// in every orthogonal direction.
    Orthogonal {
        /// The distance from the starting point to each of the other points in the simplex.
        simplex_size: Float,
    },
    /// Creates a custom simplex from a list of points.
    Custom {
        /// The points to use in the simplex (ignores any given starting point).
        simplex: Vec<Vec<Float>>,
    },
}
impl Default for SimplexConstructionMethod {
    fn default() -> Self {
        Self::Orthogonal { simplex_size: 1.0 }
    }
}

impl SimplexConstructionMethod {
    fn generate<U, E>(
        &self,
        func: &dyn Function<U, E>,
        x0: &[Float],
        bounds: Option<&Vec<Bound>>,
        user_data: &mut U,
    ) -> Result<Simplex, E> {
        match self {
            Self::Orthogonal { simplex_size } => {
                let mut points = Vec::default();
                let mut point_0 = Point::from(Bound::to_unbounded(x0, bounds));
                point_0.evaluate_bounded(func, bounds, user_data)?;
                points.push(point_0.clone());
                let dim = point_0.dimension();
                assert!(
                    dim >= 2,
                    "Nelder-Mead is only a suitable method for problems of dimension >= 2"
                );
                for i in 0..dim {
                    let mut point_i = point_0.clone();
                    point_i.x[i] += *simplex_size;
                    point_i.fx = Float::NAN;
                    point_i.evaluate_bounded(func, bounds, user_data)?;
                    points.push(point_i);
                }
                Ok(Simplex::new(&points))
            }
            Self::Custom { simplex } => {
                assert!(!simplex.is_empty());
                assert!(simplex.len() == simplex[0].len() + 1);
                assert!(simplex.len() > 2);
                Ok(Simplex::new(
                    &simplex
                        .iter()
                        .map(|x| {
                            let mut point_i = Point::from(Bound::to_unbounded(x, bounds));
                            point_i.evaluate_bounded(func, bounds, user_data)?;
                            Ok(point_i)
                        })
                        .collect::<Result<Vec<Point>, E>>()?,
                ))
            }
        }
    }
}

/// A [`Simplex`] represents a list of [`Point`]s. This particular implementation is intended to be
/// sorted.
#[derive(Default, Clone)]
pub struct Simplex {
    points: Vec<Point>,
    dimension: usize,
    sorted: bool,
    centroid: DVector<Float>,
    volume: Float,
    initial_best: Point,
    initial_worst: Point,
    initial_volume: Float,
}
impl Debug for Simplex {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{:#?}", self.points)
    }
}
impl Simplex {
    fn new(points: &[Point]) -> Self {
        let mut sorted_points = points.to_vec();
        sorted_points.sort_by(|a, b| a.total_cmp(b));
        let initial_best = sorted_points[0].clone();
        let initial_worst = sorted_points[sorted_points.len() - 1].clone();
        let n_params = points.len() - 1;
        let diffs: Vec<DVector<Float>> = sorted_points
            .iter()
            .skip(1)
            .map(|p| &p.x - &initial_best.x)
            .collect();
        let gram_mat = DMatrix::from_fn(n_params, n_params, |i, j| diffs[i].dot(&diffs[j]));
        // NOTE: volume calculation is off by a constant 1/n! which divides out on both sides
        // whenever we use this!
        let volume = Float::sqrt(gram_mat.determinant());
        let dim = n_params as Float;
        let centroid: DVector<Float> = sorted_points
            .iter()
            .rev()
            .skip(1)
            .map(|p| (&p.x / dim))
            .sum();
        Self {
            points: sorted_points,
            dimension: points.len(),
            sorted: false,
            centroid,
            volume,
            initial_best,
            initial_worst,
            initial_volume: volume,
        }
    }
    fn best_position(&self, bounds: Option<&Vec<Bound>>) -> (DVector<Float>, Float) {
        let (y, fx) = self.best().clone().into_vec_val();
        (Bound::to_bounded(&y, bounds), fx)
    }
    fn best(&self) -> &Point {
        &self.points[0]
    }
    fn worst(&self) -> &Point {
        &self.points[self.points.len() - 1]
    }
    fn second_worst(&self) -> &Point {
        &self.points[self.points.len() - 2]
    }
    fn insert_and_sort(&mut self, index: usize, element: Point) {
        self.points.insert(index, element);
        self.points.pop();
        self.sorted = false;
        self.sort();
        self.compute_centroid();
    }
    fn insert_sorted(&mut self, index: usize, element: Point) {
        self.points.insert(index, element);
        self.points.pop();
        self.sorted = true;
        self.compute_centroid();
    }
    fn sort(&mut self) {
        if !self.sorted {
            self.sorted = true;
            self.points.sort_by(|a, b| a.total_cmp(b));
        }
    }
    fn compute_centroid(&mut self) {
        let dim = (self.points.len() - 1) as Float;
        self.centroid = self.points.iter().rev().skip(1).map(|p| &p.x / dim).sum()
    }
    // TODO: track centroid updates
    #[allow(dead_code)]
    fn centroid_add(&mut self, a: &Point) {
        let dim = (self.points.len() - 1) as Float;
        self.centroid += &a.x / dim;
    }
    // TODO: track centroid updates
    #[allow(dead_code)]
    fn centroid_remove(&mut self, a: &Point) {
        let dim = (self.points.len() - 1) as Float;
        self.centroid -= &a.x / dim;
    }
    fn scale_volume(&mut self, factor: Float) {
        self.volume *= factor;
    }
}

/// Selects the expansion method used in the Nelder-Mead algorithm. See Lagarias et al.[^1] for more details.
///
/// [^1]: [J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, ‘Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions’, SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1998.](https://doi.org/10.1137/S1052623496303470)
#[derive(Default, Debug, Clone)]
pub enum SimplexExpansionMethod {
    /// Greedy minimization will calculate both a reflected an expanded point in an expansion step
    /// but will return the one that gives the best minimum.
    #[default]
    GreedyMinimization,
    /// Greedy expansion will calculate both a reflected and expanded point in an expansion step
    /// but will return the expanded point always, even if the reflected point is a better minimum.
    GreedyExpansion,
}

/// Various termination methods based on the evaluation of the function at each point in the
/// simplex. See Singer et al.[^1] for more details.
///
/// [^1]: [S. Singer and S. Singer, ‘Efficient Implementation of the Nelder–Mead Search Algorithm’, Applied Numerical Analysis & Computational Mathematics, vol. 1, no. 2, pp. 524–534, 2004.](https://doi.org/10.1002/anac.200410015)
#[derive(Debug, Clone)]
pub enum NelderMeadFTerminator {
    /// For the worst point $`x_h`$ and best point $`x_l`$, converge if the following is true:
    /// ```math
    /// 2 \frac{f(x_h) - f(x_l)}{|f(x_h)| + |f(x_l)|} <= \varepsilon
    /// ```
    Amoeba {
        /// Relative tolerance $`\varepsilon`$.
        tol_f_rel: Float,
    },
    /// For the worst point $`x_h`$ and best point $`x_l`$, converge if the following is true:
    /// ```math
    /// f(x_h) - f(x_l) <= \varepsilon
    /// ```
    Absolute {
        /// Absolute tolerance $`\varepsilon`$.
        tol_f_abs: Float,
    },
    /// Converge if the standard deviation of the function evaluations of all points in the simplex
    /// is $`\sigma <= \varepsilon`$.
    StdDev {
        /// Absolute tolerance $`\varepsilon`$.
        tol_f_abs: Float,
    },
    /// No termination condition.
    None,
}
impl NelderMeadFTerminator {
    fn update_convergence(&self, simplex: &Simplex, status: &mut Status) {
        match self {
            Self::Amoeba { tol_f_rel } => {
                let fh = simplex.worst().get_fx_checked();
                let fl = simplex.best().get_fx_checked();
                if 2.0 * (fh - fl) / (Float::abs(fh) + Float::abs(fl)) <= *tol_f_rel {
                    status.set_converged();
                    status.update_message("term_f = AMOEBA");
                }
            }
            Self::Absolute { tol_f_abs } => {
                let fh = simplex.worst().get_fx_checked();
                let fl = simplex.best().get_fx_checked();
                if fh - fl <= *tol_f_abs {
                    status.set_converged();
                    status.update_message("term_f = ABSOLUTE");
                }
            }
            Self::StdDev { tol_f_abs } => {
                let dim = simplex.dimension as Float;
                let mean = simplex.points.iter().map(|point| point.fx).sum::<Float>() / dim;
                let std_dev = Float::sqrt(
                    simplex
                        .points
                        .iter()
                        .map(|point| Float::powi(point.fx - mean, 2))
                        .sum::<Float>()
                        / dim,
                );
                if std_dev <= *tol_f_abs {
                    status.set_converged();
                    status.update_message("term_f = STDDEV")
                }
            }
            Self::None => {}
        }
    }
}

/// Various termination methods based on the the position of points in the simplex.
/// See Singer et al.[^1] for more details.
///
/// [^1]: [S. Singer and S. Singer, ‘Efficient Implementation of the Nelder–Mead Search Algorithm’, Applied Numerical Analysis & Computational Mathematics, vol. 1, no. 2, pp. 524–534, 2004.](https://doi.org/10.1002/anac.200410015)
#[derive(Debug, Clone)]
pub enum NelderMeadXTerminator {
    /// For the best point in the simplex $`x_l`$, converge if the following condition is met:
    /// ```math
    /// \max_{j\neq l} ||x_j - x_l||_{\inf} \leq \varepsilon
    /// ```
    Diameter {
        /// Absolute tolerance $`\varepsilon`$.
        tol_x_abs: Float,
    },
    /// For the best point in the simplex $`x_l`$, converge if the following condition is met:
    /// ```math
    /// \frac{\max_{j\neq l} ||x_j - x_l||_1}{\max\left\{1, ||x_l||_1\right\}} \leq \varepsilon
    /// ```
    Higham {
        /// Relative tolerance $`\varepsilon`$.
        tol_x_rel: Float,
    },
    /// For the worst point $`x_h`$ and best point $`x_l`$, as well as the original values of those
    /// points at the beginning of the algorithm, denoted $`x_h^{(0)}`$ and $`x_l^{(0)}`$
    /// respectively, converge if the following condition is met:
    /// ```math
    /// ||x_h - x_l||_2 \leq \varepsilon ||x_h^{(0)} - x_l^{(0)}||_2
    /// ```
    Rowan {
        /// Relative tolerance $`\varepsilon`$.
        tol_x_rel: Float,
    },
    /// Given the volume of the simplex
    /// ```math
    /// V(S) \equiv \frac{1}{n!}\sqrt{\Gamma(x_1-x_0,...,x_n-x_0)}
    /// ```
    /// where $`\Gamma`$ is the Gram determinant, compute the linearized volume $`LV(S)\equiv
    /// \sqrt[n]{V(S)}`$ and converge if the following condition is met:
    /// ```math
    /// LV(S) \leq \varepsilon LV(S^{(0)})
    /// ```
    /// where $`S`$ is the current simplex and $`S^{(0)}`$ is the simplex at the beginning of the
    /// algorithm. Note that $`V(S)`$ is only calculated once in practice and updated according to
    /// each step type by a single multiplication, so this method is very efficient.
    Singer {
        /// Relative tolerance $`\varepsilon`$.
        tol_x_rel: Float,
    },
    /// No termination condition.
    None,
}

impl NelderMeadXTerminator {
    fn update_convergence(&self, simplex: &Simplex, status: &mut Status) {
        match self {
            Self::Diameter { tol_x_abs } => {
                let l = simplex.worst();
                let max_inf_norm = simplex
                    .points
                    .iter()
                    .rev()
                    .skip(1) // skip l itself
                    .map(|point| {
                        let diff = &point.x - &l.x;
                        let mut inf_norm = 0.0;
                        for i in 0..diff.len() {
                            if inf_norm < Float::abs(diff[i]) {
                                inf_norm = Float::abs(diff[i])
                            }
                        }
                        inf_norm
                    })
                    .max_by(|&a, &b| a.total_cmp(&b))
                    .unwrap_or(0.0);
                if max_inf_norm <= *tol_x_abs {
                    status.set_converged();
                    status.update_message("term_x = DIAMETER");
                }
            }
            Self::Higham { tol_x_rel } => {
                let l = simplex.worst();
                let l1_norm_l = l.x.lp_norm(1);
                let denom = Float::max(l1_norm_l, 1.0);
                let numer = simplex
                    .points
                    .iter()
                    .rev()
                    .skip(1)
                    .map(|point| {
                        let diff = &point.x - &l.x;
                        diff.lp_norm(1)
                    })
                    .max_by(|&a, &b| a.total_cmp(&b))
                    .unwrap_or(0.0);
                if numer / denom <= *tol_x_rel {
                    status.set_converged();
                    status.update_message("term_x = HIGHAM");
                }
            }
            Self::Rowan { tol_x_rel } => {
                let init_diff = (&simplex.initial_worst.x - &simplex.initial_best.x).lp_norm(2);
                let current_diff = (&simplex.worst().x - &simplex.best().x).lp_norm(2);
                if current_diff <= *tol_x_rel * init_diff {
                    status.set_converged();
                    status.update_message("term_x = ROWAN");
                }
            }
            Self::Singer { tol_x_rel } => {
                let dim = simplex.dimension as Float;
                let lv_init = Float::powf(simplex.initial_volume, 1.0 / dim);
                let lv_current = Float::powf(simplex.volume, 1.0 / dim);
                if lv_current <= *tol_x_rel * lv_init {
                    status.set_converged();
                    status.update_message("term_x = SINGER");
                }
            }
            Self::None => {}
        }
    }
}

/// The Nelder-Mead method
///
/// The Nelder-Mead method uses a simplex of $`n+1`$ points where $`n`$ is the dimension of the
/// input vector. The algorithm is as follows:
///
/// 0. Pick a starting simplex. The default implementation just takes one simplex point to be the
///    starting point and the others to be steps of equal size in each coordinate direction.
/// 1. Compute $`f(\vec{x}_i)`$ for each point in the simplex.
/// 2. Calculate the centroid of all but the worst point $`\vec{x}^\dagger`$ in the simplex,
///    $`\vec{x}_o`$.
/// 3. Check for convergence: (see [`NelderMeadFTerminator`] and [`NelderMeadXTerminator`]).
/// 4. **Reflection**: Compute $`\vec{x}_r = \vec{x}_o + \alpha (\vec{x}_o - \vec{x}^\dagger)`$.
///    If $`f(\vec{x}_r)`$ is better than the second worst point $`\vec{x}^\ddagger`$ and not
///    better than the best point $`\vec{x}^*`$, then replace $`\vec{x}^\dagger`$ with
///    $`\vec{x}_r`$ and go to **Step 1**. Else, go to **Step 6**.
/// 5. **Expansion**: If $`\vec{x}_r`$ is the best point in the simplex, compute the $`\vec{x}_e =
///    \vec{x}_o + \gamma (\vec{x}_r - \vec{x}_o)`$, replace $`\vec{x}^\dagger`$ with whichever is
///    better, $`\vec{x}_r`$ or $`\vec{x}_e`$, if greedy minimization is used, otherwise choose
///    $`\vec{x}_e`$ if greedy expansion is used and go to **Step 1**.
/// 6. **Contraction**: Here, $`\vec{x}_r`$ is either the worst or second worst point. If it's
///     second-worst, go to **Step 7**. If it's the worst, go to **Step 8**.
/// 7. Compute the "outside" contracted point $`\vec{x}_c + \rho_o (\vec{x}_r - \vec{x}_o)`$.
///    If $`f(\vec{x}_c) < f(\vec{x}_r)`$ (if the contraction improved the point),
///    replace $`\vec{x}^\dagger`$ with $`\vec{x}_c`$ and go to **Step 1**. Else, go to **Step 9**.
/// 8. Compute the "inside" contracted point $`\vec{x}_c - \rho_i (\vec{x}_r - \vec{x}_o)`$ (note
///    the minus sign). If $`f(\vec{x}_c) < f(\vec{x}^\dagger)`$ (if the contraction improved the
///    worst point), replace $`\vec{x}^\dagger`$ with $`\vec{x}_c`$ and go to **Step 1**. Else,
///    go to **Step 9**.
/// 9. **Shrink**: Replace all the points except the best, $`\vec{x}^*`$, with $`\vec{x}_i =
///    \vec{x}^* + \sigma (\vec{x}_i - \vec{x}^*)`$ and go to **Step 1**.
#[derive(Debug, Clone)]
pub struct NelderMead {
    alpha: Float,
    beta: Float,
    gamma: Float,
    delta: Float,
    simplex: Simplex,
    construction_method: SimplexConstructionMethod,
    expansion_method: SimplexExpansionMethod,
    terminator_f: NelderMeadFTerminator,
    terminator_x: NelderMeadXTerminator,
    compute_parameter_errors: bool,
}
impl Default for NelderMead {
    fn default() -> Self {
        Self::new()
    }
}
impl NelderMead {
    /// Create a new Nelder-Mead algorithm with all default values. This is equivalent to
    /// [`NelderMead::default()`].
    pub fn new() -> Self {
        Self {
            alpha: 1.0,
            beta: 2.0,
            gamma: 0.5,
            delta: 0.5,
            simplex: Simplex::default(),
            construction_method: SimplexConstructionMethod::default(),
            expansion_method: SimplexExpansionMethod::default(),
            terminator_f: NelderMeadFTerminator::StdDev {
                tol_f_abs: Float::EPSILON.powf(0.25),
            },
            terminator_x: NelderMeadXTerminator::Singer {
                tol_x_rel: Float::EPSILON.powf(0.25),
            },
            compute_parameter_errors: true,
        }
    }
    /// Set the reflection coefficient $`\alpha`$ (default = `1`).
    ///
    /// # Panics
    ///
    /// This method will panic if $`\alpha <= 0`$.
    pub fn with_alpha(mut self, value: Float) -> Self {
        assert!(value > 0.0);
        self.alpha = value;
        self
    }
    /// Set the expansion coefficient $`\beta`$ (default = `2`).
    ///
    /// # Panics
    ///
    /// This method will panic if $`\beta <= 1`$ or $`\beta <= \alpha`$.
    pub fn with_beta(mut self, value: Float) -> Self {
        assert!(value > 1.0);
        assert!(value > self.alpha);
        self.beta = value;
        self
    }
    /// Set the contraction coefficient $`\gamma`$ (default = `0.5`).
    ///
    /// # Panics
    ///
    /// This method will panic if $`\gamma >= 1`$ or $`\gamma <= 0`$.
    pub fn with_gamma(mut self, value: Float) -> Self {
        assert!(value > 0.0);
        assert!(value < 1.0);
        self.gamma = value;
        self
    }
    /// Set the shrink coefficient $`\delta`$ (default = `0.5`).
    ///
    /// # Panics
    ///
    /// This method will panic if $`\delta >= 1`$ or $`\delta <= 0`$.
    pub fn with_delta(mut self, value: Float) -> Self {
        assert!(value > 0.0);
        assert!(value < 1.0);
        self.delta = value;
        self
    }
    /// A set of adaptive hyperparameters according to Gao and Han[^1]. This method, dubbed ANMS
    /// for Adaptive Nelder-Mead Simplex, is identical to the Standard Nelder-Mead Simplex (SNMS)
    /// when the input dimension is equal to 2. The authors of the paper show that this method can
    /// significantly reduce the number of function evaluations for dimensions greater than 10,
    /// although it has mixed results for the Moré-Garbow-Hilstrom test functions with dimensions
    /// between 2 and 6 and can sometimes lead to significantly more function evaluations. For
    /// dimensions greater than 6 for the subset of those test functions which support higher
    /// dimensions, it generally required less evaluations (with several exceptions, see
    /// **Table 4** in the paper for more details).
    ///
    /// [^1]: [Gao, F., Han, L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. *Comput Optim Appl* **51**, 259–277 (2012).](https://doi.org/10.1007/s10589-010-9329-3)
    pub fn with_adaptive(mut self, n: usize) -> Self {
        let n = n as Float;
        self.alpha = 1.0;
        self.beta = 1.0 + (2.0 / n);
        self.gamma = 0.75 - 1.0 / (2.0 * n);
        self.delta = 1.0 - 1.0 / n;
        self
    }
    /// Use the given [`SimplexConstructionMethod`] to compute the starting [`Simplex`].
    pub fn with_construction_method(mut self, method: SimplexConstructionMethod) -> Self {
        self.construction_method = method;
        self
    }
    /// Set the [`SimplexExpansionMethod`].
    pub const fn with_expansion_method(mut self, method: SimplexExpansionMethod) -> Self {
        self.expansion_method = method;
        self
    }
    /// Set the termination condition concerning the function values.
    pub const fn with_terminator_f(mut self, term: NelderMeadFTerminator) -> Self {
        self.terminator_f = term;
        self
    }
    /// Set the termination condition concerning the simplex positions.
    pub const fn with_terminator_x(mut self, term: NelderMeadXTerminator) -> Self {
        self.terminator_x = term;
        self
    }
    /// Disable covariance calculation upon convergence (not recommended except for testing very large
    /// problems).
    pub const fn with_no_error_calculation(mut self) -> Self {
        self.compute_parameter_errors = false;
        self
    }
}
impl<U, E> Algorithm<U, E> for NelderMead {
    fn initialize(
        &mut self,
        func: &dyn Function<U, E>,
        x0: &[Float],
        bounds: Option<&Vec<Bound>>,
        user_data: &mut U,
        status: &mut Status,
    ) -> Result<(), E> {
        self.simplex = self
            .construction_method
            .generate(func, x0, bounds, user_data)?;
        status.update_position(self.simplex.best_position(bounds));
        Ok(())
    }

    fn step(
        &mut self,
        _i_step: usize,
        func: &dyn Function<U, E>,
        bounds: Option<&Vec<Bound>>,
        user_data: &mut U,
        status: &mut Status,
    ) -> Result<(), E> {
        let h = self.simplex.worst();
        let s = self.simplex.second_worst();
        let l = self.simplex.best();
        let c = &self.simplex.centroid;
        let mut xr = Point::from(c + (c - &h.x).scale(self.alpha));
        xr.evaluate_bounded(func, bounds, user_data)?;
        status.inc_n_f_evals();
        if l <= &xr && &xr < s {
            // Reflect if l <= x_r < s
            // In this general case, we just know that r is better than s, we just don't know where
            // it should go. We have to do a sort, but it should be quick since most of the simplex
            // is already sorted.
            self.simplex.insert_and_sort(self.simplex.dimension - 2, xr);
            status.update_position(self.simplex.best_position(bounds));
            status.update_message("REFLECT");
            self.simplex.scale_volume(self.alpha);
            return Ok(());
        } else if &xr < l {
            // Expand if x_r < l
            // This means that x_r is certainly the best point so far. We should either expand and
            // accept the expanded point x_e regardless (greedy expansion), or we should do one
            // final comparison between x_r and x_e and choose the smallest (greedy minimization).
            let mut xe = Point::from(c + (&xr.x - c).scale(self.beta));
            xe.evaluate_bounded(func, bounds, user_data)?;
            status.inc_n_f_evals();
            self.simplex.insert_sorted(
                0,
                match self.expansion_method {
                    SimplexExpansionMethod::GreedyMinimization => {
                        if xe < xr {
                            xe
                        } else {
                            xr
                        }
                    }
                    SimplexExpansionMethod::GreedyExpansion => xe,
                },
            );
            status.update_position(self.simplex.best_position(bounds));
            status.update_message("EXPAND");
            self.simplex.scale_volume(self.alpha * self.beta);
            return Ok(());
        } else if s <= &xr {
            // Try to contract if s <= x_r
            // This means x_r would just be another worst, although possibly an improvement from the
            // previous worst. If it is better than worst (in between worst and second-worst), we
            // try contracting on the segment c-x_r. Otherwise, x_r would be worse than the worst,
            // but we'll try one more attempt at at least improving it to be better than worst by
            // contracting on the segment h-c.
            // If all else fails, and we don't find improvement, we shrink the whole simplex
            // towards l, the best point.
            //
            // Note that if we had an improving x_r, we still reject it unless contracting improves
            // it, in which we take the improved value. Shouldn't we also accept x_r in the case
            // where x_c is not better, but x_r is still better than h? There must be a reason we
            // don't do this in practice. For instance, if x_r was worse than worst, contracting to
            // make it event the slightest bit better than worst will be accepted.
            if &xr < h {
                // Try to contract outside if x_r < h
                let mut xc = Point::from(c + (&xr.x - c).scale(self.gamma));
                xc.evaluate_bounded(func, bounds, user_data)?;
                status.inc_n_f_evals();
                if xc <= xr {
                    if &xc < s {
                        // If we are better than the second-worst, we need to sort everything, we
                        // could technically be anywhere, even in a new best.
                        self.simplex.insert_and_sort(self.simplex.dimension - 1, xc);
                        status.update_position(self.simplex.best_position(bounds));
                    } else {
                        // Otherwise, we don't even need to update the best position, this was just
                        // a new worst or equal to second worst.
                        self.simplex.insert_sorted(self.simplex.dimension - 1, xc);
                    }
                    status.update_message("CONTRACT OUT");
                    self.simplex.scale_volume(self.alpha * self.gamma);
                    return Ok(());
                }
                // TODO: else try accepting x_r here?
            } else {
                // Contract inside if h <= x_r
                let mut xc = Point::from(c + (&h.x - c).scale(self.gamma));
                xc.evaluate_bounded(func, bounds, user_data)?;
                status.inc_n_f_evals();
                if &xc < h {
                    if &xc < s {
                        // If we are better than the second-worst, we need to sort everything, we
                        // could technically be anywhere, even in a new best.
                        self.simplex.insert_and_sort(self.simplex.dimension - 1, xc);
                        status.update_position(self.simplex.best_position(bounds));
                    } else {
                        // Otherwise, we don't even need to update the best position, this was just
                        // a new worst or equal to second worst.
                        self.simplex.insert_sorted(self.simplex.dimension - 1, xc);
                    }
                    status.update_message("CONTRACT IN");
                    self.simplex.scale_volume(self.gamma);
                    return Ok(());
                }
            }
        }
        // If no point is accepted, shrink
        let l_clone = l.clone();
        for p in self.simplex.points.iter_mut().skip(1) {
            *p = Point::from(&l_clone.x + (&p.x - &l_clone.x).scale(self.delta));
            p.evaluate_bounded(func, bounds, user_data)?;
            status.inc_n_f_evals();
        }
        // We must do a fresh sort here, since we don't know the ordering of the shrunken simplex,
        // things might have moved around a lot!
        self.simplex.sorted = false;
        self.simplex.sort();
        // We also need to recalculate the centroid and figure out if there's a new best position:
        self.simplex.compute_centroid();
        status.update_position(self.simplex.best_position(bounds));
        status.update_message("SHRINK");
        self.simplex
            .scale_volume(Float::powi(self.delta, self.simplex.dimension as i32));
        Ok(())
    }

    fn check_for_termination(
        &mut self,
        _func: &dyn Function<U, E>,
        _bounds: Option<&Vec<Bound>>,
        _user_data: &mut U,
        status: &mut Status,
    ) -> Result<bool, E> {
        self.terminator_x.update_convergence(&self.simplex, status);
        if status.converged {
            return Ok(true);
        }
        self.terminator_f.update_convergence(&self.simplex, status);
        if status.converged {
            return Ok(true);
        }
        Ok(false)
    }

    fn postprocessing(
        &mut self,
        func: &dyn Function<U, E>,
        _bounds: Option<&Vec<Bound>>,
        user_data: &mut U,
        status: &mut Status,
    ) -> Result<(), E> {
        if self.compute_parameter_errors {
            let hessian = func.hessian(status.x.as_slice(), user_data)?;
            status.set_hess(&hessian);
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use std::convert::Infallible;

    use approx::assert_relative_eq;

    use crate::{test_functions::Rosenbrock, Float, Minimizer};

    use super::NelderMead;

    #[test]
    fn test_nelder_mead() -> Result<(), Infallible> {
        let algo = NelderMead::default();
        let mut m = Minimizer::new(&algo, 2);
        let problem = Rosenbrock { n: 2 };
        m.minimize(&problem, &[-2.0, 2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(0.25));
        m.minimize(&problem, &[2.0, 2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(1.0 / 5.0));
        m.minimize(&problem, &[2.0, -2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(0.25));
        m.minimize(&problem, &[-2.0, -2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(0.25));
        m.minimize(&problem, &[0.0, 0.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(0.25));
        m.minimize(&problem, &[1.0, 1.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.sqrt());
        Ok(())
    }

    #[test]
    fn test_bounded_nelder_mead() -> Result<(), Infallible> {
        let algo = NelderMead::default();
        let mut m = Minimizer::new(&algo, 2).with_bounds(Some(vec![(-4.0, 4.0), (-4.0, 4.0)]));
        let problem = Rosenbrock { n: 2 };
        m.minimize(&problem, &[-2.0, 2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(0.25));
        m.minimize(&problem, &[2.0, 2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(1.0 / 5.0));
        m.minimize(&problem, &[2.0, -2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(0.25));
        m.minimize(&problem, &[-2.0, -2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(1.0 / 5.0));
        m.minimize(&problem, &[0.0, 0.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(1.0 / 5.0));
        m.minimize(&problem, &[1.0, 1.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.sqrt());
        Ok(())
    }

    #[test]
    fn test_adaptive_nelder_mead() -> Result<(), Infallible> {
        let algo = NelderMead::default().with_adaptive(2);
        let mut m = Minimizer::new(&algo, 2);
        let problem = Rosenbrock { n: 2 };
        m.minimize(&problem, &[-2.0, 2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(0.25));
        m.minimize(&problem, &[2.0, 2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(1.0 / 5.0));
        m.minimize(&problem, &[2.0, -2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(0.25));
        m.minimize(&problem, &[-2.0, -2.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(0.25));
        m.minimize(&problem, &[0.0, 0.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.powf(0.25));
        m.minimize(&problem, &[1.0, 1.0], &mut ())?;
        assert!(m.status.converged);
        assert_relative_eq!(m.status.fx, 0.0, epsilon = Float::EPSILON.sqrt());
        Ok(())
    }
}