ganesh/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
//! `ganesh` (/ɡəˈneɪʃ/), named after the Hindu god of wisdom, provides several common minimization algorithms as well as a straightforward, trait-based interface to create your own extensions. This crate is intended to be as simple as possible. The user needs to implement the [`Function`] trait on some struct which will take a vector of parameters and return a single-valued [`Result`] ($`f(\mathbb{R}^n) \to \mathbb{R}`$). Users can optionally provide a gradient function to speed up some algorithms, but a default central finite-difference implementation is provided so that all algorithms will work out of the box.
//!
//! <div class="warning">
//!
//! This crate is still in an early development phase, and the API is not stable. It can (and likely will) be subject to breaking changes before the 1.0.0 version release (and hopefully not many after that).
//!
//! </div>
//!
//! # Table of Contents
//! - [Key Features](#key-features)
//! - [Quick Start](#quick-start)
//! - [Bounds](#bounds)
//! - [Future Plans](#future-plans)
//!
//! # Key Features
//! * Simple but powerful trait-oriented library which tries to follow the Unix philosophy of "do one thing and do it well".
//! * Generics to allow for different numeric types to be used in the provided algorithms.
//! * Algorithms that are simple to use with sensible defaults.
//! * Traits which make developing future algorithms simple and consistent.
//! * Pressing `Ctrl-C` during a fit will still output a [`Status`], but the fit message will
//! indicate that the fit was ended by the user.
//!
//! # Quick Start
//!
//! This crate provides some common test functions in the [`test_functions`] module. Consider the following implementation of the Rosenbrock function:
//!
//! ```rust
//! use std::convert::Infallible;
//! use ganesh::prelude::*;
//!
//! pub struct Rosenbrock {
//! pub n: usize,
//! }
//! impl Function<f64, (), Infallible> for Rosenbrock {
//! fn evaluate(&self, x: &[f64], _user_data: &mut ()) -> Result<f64, Infallible> {
//! Ok((0..(self.n - 1))
//! .map(|i| 100.0 * (x[i + 1] - x[i].powi(2)).powi(2) + (1.0 - x[i]).powi(2))
//! .sum())
//! }
//! }
//! ```
//! To minimize this function, we could consider using the Nelder-Mead algorithm:
//! ```rust
//! use ganesh::prelude::*;
//! use ganesh::algorithms::NelderMead;
//! # use std::convert::Infallible;
//!
//! # pub struct Rosenbrock {
//! # pub n: usize,
//! # }
//! # impl Function<f64, (), Infallible> for Rosenbrock {
//! # fn evaluate(&self, x: &[f64], _user_data: &mut ()) -> Result<f64, Infallible> {
//! # Ok((0..(self.n - 1))
//! # .map(|i| 100.0 * (x[i + 1] - x[i].powi(2)).powi(2) + (1.0 - x[i]).powi(2))
//! # .sum())
//! # }
//! # }
//! fn main() -> Result<(), Infallible> {
//! let problem = Rosenbrock { n: 2 };
//! let nm = NelderMead::default();
//! let mut m = Minimizer::new(&nm, 2);
//! let x0 = &[2.0, 2.0];
//! m.minimize(&problem, x0, &mut ())?;
//! println!("{}", m.status);
//! Ok(())
//! }
//! ```
//!
//! This should output
//! ```shell
//!╒══════════════════════════════════════════════════════════════════════════════════════════════╕
//!│ FIT RESULTS │
//!╞════════════════════════════════════════════╤════════════════════╤═════════════╤══════════════╡
//!│ Status: Converged │ fval: +2.281E-16 │ #fcn: 76 │ #grad: 76 │
//!├────────────────────────────────────────────┴────────────────────┴─────────────┴──────────────┤
//!│ Message: term_f = STDDEV │
//!├───────╥──────────────┬──────────────╥──────────────┬──────────────┬──────────────┬───────────┤
//!│ Par # ║ Value │ Uncertainty ║ Initial │ -Bound │ +Bound │ At Limit? │
//!├───────╫──────────────┼──────────────╫──────────────┼──────────────┼──────────────┼───────────┤
//!│ 0 ║ +1.001E0 │ +8.461E-1 ║ +2.000E0 │ -inf │ +inf │ │
//!│ 1 ║ +1.003E0 │ +1.695E0 ║ +2.000E0 │ -inf │ +inf │ │
//!└───────╨──────────────┴──────────────╨──────────────┴──────────────┴──────────────┴───────────┘
//! ```
//!
//! # Bounds
//! All minimizers in `ganesh` have access to a feature which allows algorithms which usually function in unbounded parameter spaces to only return results inside a bounding box. This is done via a parameter transformation, the same one used by [`LMFIT`](https://lmfit.github.io/lmfit-py/) and [`MINUIT`](https://root.cern.ch/doc/master/classTMinuit.html). This transform is not enacted on algorithms which already have bounded implementations, like [`L-BFGS-B`](`algorithms::lbfgsb`). While the user inputs parameters within the bounds, unbounded algorithms can (and in practice will) convert those values to a set of unbounded "internal" parameters. When functions are called, however, these internal parameters are converted back into bounded "external" parameters, via the following transformations:
//!
//! Upper and lower bounds:
//! ```math
//! x_\text{int} = \arcsin\left(2\frac{x_\text{ext} - x_\text{min}}{x_\text{max} - x_\text{min}} - 1\right)
//! ```
//! ```math
//! x_\text{ext} = x_\text{min} + \left(\sin(x_\text{int}) + 1\right)\frac{x_\text{max} - x_\text{min}}{2}
//! ```
//! Upper bound only:
//! ```math
//! x_\text{int} = \sqrt{(x_\text{max} - x_\text{ext} + 1)^2 - 1}
//! ```
//! ```math
//! x_\text{ext} = x_\text{max} + 1 - \sqrt{x_\text{int}^2 + 1}
//! ```
//! Lower bound only:
//! ```math
//! x_\text{int} = \sqrt{(x_\text{ext} - x_\text{min} + 1)^2 - 1}
//! ```
//! ```math
//! x_\text{ext} = x_\text{min} - 1 + \sqrt{x_\text{int}^2 + 1}
//! ```
//! As noted in the documentation for both `LMFIT` and `MINUIT`, these bounds should be used with caution. They turn linear problems into nonlinear ones, which can mess with error propagation and even fit convergence, not to mention increase function complexity. Methods which output covariance matrices need to be adjusted if bounded, and `MINUIT` recommends fitting a second time near a minimum without bounds to ensure proper error propagation.
//!
//! # Future Plans
//!
//! * Eventually, I would like to implement MCMC algorithms and some more modern gradient-free optimization techniques.
//! * There are probably many optimizations and algorithm extensions that I'm missing right now because I just wanted to get it working first.
//! * A test suite
#![warn(
clippy::nursery,
clippy::unwrap_used,
clippy::expect_used,
clippy::doc_markdown,
clippy::doc_link_with_quotes,
clippy::missing_safety_doc,
clippy::missing_panics_doc,
clippy::missing_errors_doc,
clippy::perf,
clippy::style,
missing_docs
)]
use std::{
fmt::{Debug, Display, UpperExp},
sync::{
atomic::{AtomicBool, Ordering},
Once,
},
};
use dyn_clone::DynClone;
use lazy_static::lazy_static;
use nalgebra::{DMatrix, DVector, RealField, Scalar};
use num::{traits::NumAssign, Float};
use serde::{Deserialize, Serialize};
/// Module containing minimization algorithms
pub mod algorithms;
/// Module containing [`Observer`]s
pub mod observers;
/// Module containing standard functions for testing algorithms
pub mod test_functions;
/// Prelude module containing everything someone should need to use this crate for non-development
/// purposes
pub mod prelude {
pub use crate::{Algorithm, Bound, Function, Minimizer, Observer, Status};
}
lazy_static! {
pub(crate) static ref CTRL_C_PRESSED: AtomicBool = AtomicBool::new(false);
}
static INIT: Once = Once::new();
pub(crate) fn init_ctrl_c_handler() {
INIT.call_once(|| {
#[allow(clippy::expect_used)]
ctrlc::set_handler(move || CTRL_C_PRESSED.store(true, Ordering::SeqCst))
.expect("Error setting Ctrl-C handler");
});
}
pub(crate) fn reset_ctrl_c_handler() {
CTRL_C_PRESSED.store(false, Ordering::SeqCst)
}
pub(crate) fn is_ctrl_c_pressed() -> bool {
CTRL_C_PRESSED.load(Ordering::SeqCst)
}
#[macro_export]
/// Convenience macro for converting raw numeric values to a generic
macro_rules! convert {
($value:expr, $type:ty) => {{
#[allow(clippy::unwrap_used)]
<$type as num::NumCast>::from($value).unwrap()
}};
}
/// An enum that describes a bound/limit on a parameter in a minimization.
///
/// [`Bound`]s take a generic `T` which represents some scalar numeric value. They can be used by
/// bounded [`Algorithm`]s directly, or by unbounded [`Algorithm`]s using parameter space
/// transformations (experimental).
#[derive(Default, Copy, Clone, Debug, Serialize, Deserialize)]
pub enum Bound<T> {
#[default]
/// `(-inf, +inf)`
NoBound,
/// `(min, +inf)`
LowerBound(T),
/// `(-inf, max)`
UpperBound(T),
/// `(min, max)`
LowerAndUpperBound(T, T),
}
impl<T> Display for Bound<T>
where
T: Scalar + Float + Display,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "({}, {})", self.lower(), self.upper())
}
}
impl<T> From<(T, T)> for Bound<T>
where
T: Scalar + Float,
{
fn from(value: (T, T)) -> Self {
assert!(value.0 < value.1);
match (value.0.is_finite(), value.1.is_finite()) {
(true, true) => Self::LowerAndUpperBound(value.0, value.1),
(true, false) => Self::LowerBound(value.0),
(false, true) => Self::UpperBound(value.1),
(false, false) => Self::NoBound,
}
}
}
impl<T> Bound<T>
where
T: Float + Scalar + Debug,
{
/// Checks whether the given `value` is compatible with the bounds.
pub fn contains(&self, value: &T) -> bool {
match self {
Self::NoBound => true,
Self::LowerBound(lb) => value >= lb,
Self::UpperBound(ub) => value <= ub,
Self::LowerAndUpperBound(lb, ub) => value >= lb && value <= ub,
}
}
/// Returns the lower bound or `-inf` if there is none.
pub fn lower(&self) -> T {
match self {
Self::NoBound => T::neg_infinity(),
Self::LowerBound(lb) => *lb,
Self::UpperBound(_) => T::neg_infinity(),
Self::LowerAndUpperBound(lb, _) => *lb,
}
}
/// Returns the upper bound or `+inf` if there is none.
pub fn upper(&self) -> T {
match self {
Self::NoBound => T::infinity(),
Self::LowerBound(_) => T::infinity(),
Self::UpperBound(ub) => *ub,
Self::LowerAndUpperBound(_, ub) => *ub,
}
}
/// Checks if the given value is equal to one of the bounds.
///
/// TODO: his just does equality comparison right now, which probably needs to be improved
/// to something with an epsilon (significant but not critical to most fits right now).
pub fn at_bound(&self, value: T) -> bool {
match self {
Self::NoBound => false,
Self::LowerBound(lb) => value == *lb,
Self::UpperBound(ub) => value == *ub,
Self::LowerAndUpperBound(lb, ub) => value == *lb || value == *ub,
}
}
/// Converts an unbounded "external" parameter into a bounded "internal" one via the transform:
///
/// Upper and lower bounds:
/// ```math
/// x_\text{int} = \arcsin\left(2\frac{x_\text{ext} - x_\text{min}}{x_\text{max} - x_\text{min}} - 1\right)
/// ```
/// Upper bound only:
/// ```math
/// x_\text{int} = \sqrt{(x_\text{max} - x_\text{ext} + 1)^2 - 1}
/// ```
/// Lower bound only:
/// ```math
/// x_\text{int} = \sqrt{(x_\text{ext} - x_\text{min} + 1)^2 - 1}
/// ```
pub fn to_bounded(values: &[T], bounds: Option<&Vec<Self>>) -> DVector<T> {
bounds
.map_or_else(
|| values.to_vec(),
|bounds| {
values
.iter()
.zip(bounds)
.map(|(val, bound)| bound._to_bounded(*val))
.collect()
},
)
.into()
}
fn _to_bounded(&self, val: T) -> T {
match *self {
Self::LowerBound(lb) => lb - T::one() + T::sqrt(T::powi(val, 2) + T::one()),
Self::UpperBound(ub) => ub + T::one() - T::sqrt(T::powi(val, 2) + T::one()),
Self::LowerAndUpperBound(lb, ub) => {
lb + (T::sin(val) + T::one()) * (ub - lb) / (T::one() + T::one())
}
Self::NoBound => val,
}
}
/// Converts a bounded "internal" parameter into an unbounded "external" one via the transform:
///
/// Upper and lower bounds:
/// ```math
/// x_\text{ext} = x_\text{min} + \left(\sin(x_\text{int}) + 1\right)\frac{x_\text{max} - x_\text{min}}{2}
/// ```
/// Upper bound only:
/// ```math
/// x_\text{ext} = x_\text{max} + 1 - \sqrt{x_\text{int}^2 + 1}
/// ```
/// Lower bound only:
/// ```math
/// x_\text{ext} = x_\text{min} - 1 + \sqrt{x_\text{int}^2 + 1}
/// ```
pub fn to_unbounded(values: &[T], bounds: Option<&Vec<Self>>) -> DVector<T> {
bounds
.map_or_else(
|| values.to_vec(),
|bounds| {
values
.iter()
.zip(bounds)
.map(|(val, bound)| bound._to_unbounded(*val))
.collect()
},
)
.into()
}
fn _to_unbounded(&self, val: T) -> T {
match *self {
Self::LowerBound(lb) => T::sqrt(T::powi(val - lb + T::one(), 2) - T::one()),
Self::UpperBound(ub) => T::sqrt(T::powi(ub - val + T::one(), 2) - T::one()),
Self::LowerAndUpperBound(lb, ub) =>
{
#[allow(clippy::suspicious_operation_groupings)]
T::asin((T::one() + T::one()) * (val - lb) / (ub - lb) - T::one())
}
Self::NoBound => val,
}
}
}
/// A trait which describes a function $`f(\mathbb{R}^n) \to \mathbb{R}`$
///
/// Such a function may also take a `user_data: &mut U` field which can be used to pass external
/// arguments to the function during minimization, or can be modified by the function itself.
///
/// The `Function` trait takes a generic `T` which represents a numeric scalar, a generic `U`
/// representing the type of user data/arguments, and a generic `E` representing any possible
/// errors that might be returned during function execution.
///
/// There is also a default implementation of a gradient function which uses a central
/// finite-difference method to evaluate derivatives. If an exact gradient is known, it can be used
/// to speed up gradient-dependent algorithms.
pub trait Function<T, U, E>
where
T: Float + Scalar + NumAssign,
{
/// The evaluation of the function at a point `x` with the given arguments/user data.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. Users should implement this trait to return a
/// `std::convert::Infallible` if the function evaluation never fails.
fn evaluate(&self, x: &[T], user_data: &mut U) -> Result<T, E>;
/// The evaluation of the function at a point `x` with the given arguments/user data. This
/// function assumes `x` is an internal, unbounded vector, but performs a coordinate transform
/// to bound `x` when evaluating the function.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. Users should implement this trait to return a
/// `std::convert::Infallible` if the function evaluation never fails.
fn evaluate_bounded(
&self,
x: &[T],
bounds: Option<&Vec<Bound<T>>>,
user_data: &mut U,
) -> Result<T, E> {
self.evaluate(Bound::to_bounded(x, bounds).as_slice(), user_data)
}
/// The evaluation of the gradient at a point `x` with the given arguments/user data.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. See [`Function::evaluate`] for more
/// information.
fn gradient(&self, x: &[T], user_data: &mut U) -> Result<DVector<T>, E> {
let n = x.len();
let x = DVector::from_column_slice(x);
let mut grad = DVector::zeros(n);
// This is technically the best step size for the gradient, cbrt(eps) * x_i (or just
// cbrt(eps) if x_i = 0)
let h: DVector<T> = x
.iter()
.map(|&xi| T::cbrt(T::epsilon()) * (xi.abs() + T::one()))
.collect::<Vec<_>>()
.into();
for i in 0..n {
let mut x_plus = x.clone();
let mut x_minus = x.clone();
x_plus[i] += h[i];
x_minus[i] -= h[i];
let f_plus = self.evaluate(x_plus.as_slice(), user_data)?;
let f_minus = self.evaluate(x_minus.as_slice(), user_data)?;
grad[i] = (f_plus - f_minus) / (convert!(2.0, T) * h[i]);
}
Ok(grad)
}
/// The evaluation of the gradient at a point `x` with the given arguments/user data. This
/// function assumes `x` is an internal, unbounded vector, but performs a coordinate transform
/// to bound `x` when evaluating the function.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. See [`Function::evaluate`] for more
/// information.
fn gradient_bounded(
&self,
x: &[T],
bounds: Option<&Vec<Bound<T>>>,
user_data: &mut U,
) -> Result<DVector<T>, E> {
self.gradient(Bound::to_bounded(x, bounds).as_slice(), user_data)
}
/// The evaluation of the hessian at a point `x` with the given arguments/user data.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. See [`Function::evaluate`] for more
/// information.
fn hessian(&self, x: &[T], user_data: &mut U) -> Result<DMatrix<T>, E> {
let x = DVector::from_column_slice(x);
let h: DVector<T> = x
.iter()
.map(|&xi| T::cbrt(T::epsilon()) * (xi.abs() + T::one()))
.collect::<Vec<_>>()
.into();
let mut res = DMatrix::zeros(x.len(), x.len());
let mut g_plus = DMatrix::zeros(x.len(), x.len());
let mut g_minus = DMatrix::zeros(x.len(), x.len());
// g+ and g- are such that
// g+[(i, j)] = g[i](x + h_je_j) and
// g-[(i, j)] = g[i](x - h_je_j)
for i in 0..x.len() {
let mut x_plus = x.clone();
let mut x_minus = x.clone();
x_plus[i] += h[i];
x_minus[i] -= h[i];
g_plus.set_column(i, &self.gradient(x_plus.as_slice(), user_data)?);
g_minus.set_column(i, &self.gradient(x_minus.as_slice(), user_data)?);
for j in 0..=i {
if i == j {
res[(i, j)] = (g_plus[(i, j)] - g_minus[(i, j)]) / (convert!(2, T) * h[i]);
} else {
res[(i, j)] = ((g_plus[(i, j)] - g_minus[(i, j)]) / (convert!(4, T) * h[j]))
+ ((g_plus[(j, i)] - g_minus[(j, i)]) / (convert!(4, T) * h[i]));
res[(j, i)] = res[(i, j)];
}
}
}
Ok(res)
}
/// The evaluation of the hessian at a point `x` with the given arguments/user data. This
/// function assumes `x` is an internal, unbounded vector, but performs a coordinate transform
/// to bound `x` when evaluating the function.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. See [`Function::evaluate`] for more
/// information.
fn hessian_bounded(
&self,
x: &[T],
bounds: Option<&Vec<Bound<T>>>,
user_data: &mut U,
) -> Result<DMatrix<T>, E> {
self.hessian(Bound::to_bounded(x, bounds).as_slice(), user_data)
}
}
/// A status message struct containing all information about a minimization result.
#[derive(Debug, Clone, Default, Serialize, Deserialize)]
pub struct Status<T: Scalar> {
/// A [`String`] message that can be set by minimization [`Algorithm`]s.
pub message: String,
/// The current position of the minimization.
pub x: DVector<T>,
/// The initial position of the minimization.
pub x0: DVector<T>,
/// The bounds used for the minimization.
pub bounds: Option<Vec<Bound<T>>>,
/// The current value of the minimization problem function at [`Status::x`].
pub fx: T,
/// The number of function evaluations (approximately, this is left up to individual
/// [`Algorithm`]s to correctly compute and may not be exact).
pub n_f_evals: usize,
/// The number of gradient evaluations (approximately, this is left up to individual
/// [`Algorithm`]s to correctly compute and may not be exact).
pub n_g_evals: usize,
/// Flag that says whether or not the fit is in a converged state.
pub converged: bool,
/// The Hessian matrix at the end of the fit ([`None`] if not computed yet)
pub hess: Option<DMatrix<T>>,
/// Covariance matrix at the end of the fit ([`None`] if not computed yet)
pub cov: Option<DMatrix<T>>,
/// Errors on parameters at the end of the fit ([`None`] if not computed yet)
pub err: Option<DVector<T>>,
/// Optional parameter names
pub parameters: Option<Vec<String>>,
}
impl<T: Scalar> Status<T> {
/// Updates the [`Status::message`] field.
pub fn update_message(&mut self, message: &str) {
self.message = message.to_string();
}
/// Updates the [`Status::x`] and [`Status::fx`] fields.
pub fn update_position(&mut self, pos: (DVector<T>, T)) {
self.x = pos.0;
self.fx = pos.1;
}
/// Sets [`Status::converged`] to be `true`.
pub fn set_converged(&mut self) {
self.converged = true;
}
/// Increments [`Status::n_f_evals`] by `1`.
pub fn inc_n_f_evals(&mut self) {
self.n_f_evals += 1;
}
/// Increments [`Status::n_g_evals`] by `1`.
pub fn inc_n_g_evals(&mut self) {
self.n_g_evals += 1;
}
/// Sets parameter names.
pub fn set_parameter_names<L: AsRef<str>>(&mut self, names: &[L]) {
self.parameters = Some(names.iter().map(|name| name.as_ref().to_string()).collect());
}
}
impl<T: Scalar + Float + RealField> Status<T> {
/// Sets the covariance matrix and updates parameter errors.
pub fn set_cov(&mut self, covariance: Option<DMatrix<T>>) {
if let Some(cov_mat) = &covariance {
self.err = Some(cov_mat.diagonal().map(|v| Float::sqrt(v)));
}
self.cov = covariance;
}
/// Sets the Hessian matrix, computes the covariance matrix, and updates parameter errors.
pub fn set_hess(&mut self, hessian: &DMatrix<T>) {
self.hess = Some(hessian.clone());
let mut covariance = hessian.clone().try_inverse();
if covariance.is_none() {
covariance = hessian
.clone()
.pseudo_inverse(Float::cbrt(T::epsilon()))
.ok();
}
if let Some(cov_mat) = &covariance {
self.err = Some(cov_mat.diagonal().map(|v| Float::sqrt(v)));
}
self.cov = covariance;
}
}
impl<T> Display for Status<T>
where
T: Float + Scalar + Display + UpperExp,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let title = format!(
"╒══════════════════════════════════════════════════════════════════════════════════════════════╕
│{:^94}│",
"FIT RESULTS",
);
let status = format!(
"╞════════════════════════════════════════════╤════════════════════╤═════════════╤══════════════╡
│ Status: {} │ fval: {:+12.3E} │ #fcn: {:>5} │ #grad: {:>5} │",
if self.converged {
"Converged "
} else {
"Invalid Minimum"
},
self.fx,
self.n_f_evals,
self.n_f_evals,
);
let message = format!(
"├────────────────────────────────────────────┴────────────────────┴─────────────┴──────────────┤
│ Message: {:<83} │",
self.message,
);
let header = "├───────╥──────────────┬──────────────╥──────────────┬──────────────┬──────────────┬───────────┤
│ Par # ║ Value │ Uncertainty ║ Initial │ -Bound │ +Bound │ At Limit? │
├───────╫──────────────┼──────────────╫──────────────┼──────────────┼──────────────┼───────────┤"
.to_string();
let mut res_list: Vec<String> = vec![];
let errs = self
.err
.clone()
.unwrap_or_else(|| DVector::from_element(self.x.len(), T::nan()));
let bounds = self
.bounds
.clone()
.unwrap_or_else(|| vec![Bound::NoBound; self.x.len()]);
for i in 0..self.x.len() {
let row =
format!(
"│ {:>5} ║ {:>+12.3E} │ {:>+12.3E} ║ {:>+12.3E} │ {:>+12.3E} │ {:>+12.3E} │ {:^9} │",
i,
self.x[i],
errs[i],
self.x0[i],
bounds[i].lower(),
bounds[i].upper(),
if bounds[i].at_bound(self.x[i]) { "yes" } else { "" }
);
res_list.push(row);
}
let bottom = "└───────╨──────────────┴──────────────╨──────────────┴──────────────┴──────────────┴───────────┘".to_string();
let out = [title, status, message, header, res_list.join("\n"), bottom].join("\n");
write!(f, "{}", out)
}
}
/// A trait representing a minimization algorithm.
///
/// This trait is implemented for the algorithms found in the [`algorithms`] module, and contains
/// all the methods needed to be run by a [`Minimizer`].
pub trait Algorithm<T: Scalar, U, E>: DynClone {
/// Any setup work done before the main steps of the algorithm should be done here.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. See [`Function::evaluate`] for more
/// information.
fn initialize(
&mut self,
func: &dyn Function<T, U, E>,
x0: &[T],
bounds: Option<&Vec<Bound<T>>>,
user_data: &mut U,
status: &mut Status<T>,
) -> Result<(), E>;
/// The main "step" of an algorithm, which is repeated until termination conditions are met or
/// the max number of steps have been taken.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. See [`Function::evaluate`] for more
/// information.
fn step(
&mut self,
i_step: usize,
func: &dyn Function<T, U, E>,
bounds: Option<&Vec<Bound<T>>>,
user_data: &mut U,
status: &mut Status<T>,
) -> Result<(), E>;
/// Runs any termination/convergence checks and returns true if the algorithm has converged.
/// Developers should also update the internal [`Status`] of the algorithm here if converged.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. See [`Function::evaluate`] for more
/// information.
fn check_for_termination(
&mut self,
func: &dyn Function<T, U, E>,
bounds: Option<&Vec<Bound<T>>>,
user_data: &mut U,
status: &mut Status<T>,
) -> Result<bool, E>;
/// Runs any steps needed by the [`Algorithm`] after termination or convergence. This will run
/// regardless of whether the [`Algorithm`] converged.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. See [`Function::evaluate`] for more
/// information.
#[allow(unused_variables)]
fn postprocessing(
&mut self,
func: &dyn Function<T, U, E>,
bounds: Option<&Vec<Bound<T>>>,
user_data: &mut U,
status: &mut Status<T>,
) -> Result<(), E> {
Ok(())
}
}
dyn_clone::clone_trait_object!(<T, U, E> Algorithm<T, U, E> where T: Scalar);
/// A trait which holds a [`callback`](`Observer::callback`) function that can be used to check an
/// [`Algorithm`]'s [`Status`] during a minimization.
pub trait Observer<T: Scalar, U> {
/// A function that is called at every step of a minimization [`Algorithm`]. If it returns
/// `false`, the [`Minimizer::minimize`] method will terminate.
fn callback(&mut self, step: usize, status: &mut Status<T>, user_data: &mut U) -> bool;
}
/// The main struct used for running [`Algorithm`]s on [`Function`]s.
pub struct Minimizer<T, U, E>
where
T: Scalar,
{
/// The [`Status`] of the [`Minimizer`], usually read after minimization.
pub status: Status<T>,
algorithm: Box<dyn Algorithm<T, U, E>>,
bounds: Option<Vec<Bound<T>>>,
max_steps: usize,
observers: Vec<Box<dyn Observer<T, U>>>,
dimension: usize,
}
impl<T, U, E> Display for Minimizer<T, U, E>
where
T: Scalar + Display + Float + UpperExp,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.status)
}
}
impl<T, U, E> Minimizer<T, U, E>
where
T: Float + Scalar + Default + Display,
{
const DEFAULT_MAX_STEPS: usize = 4000;
/// Creates a new [`Minimizer`] with the given [`Algorithm`] and `dimension` set to the number
/// of free parameters in the minimization problem.
pub fn new<A: Algorithm<T, U, E> + 'static>(algorithm: &A, dimension: usize) -> Self {
Self {
status: Status::default(),
algorithm: Box::new(dyn_clone::clone(algorithm)),
bounds: None,
max_steps: Self::DEFAULT_MAX_STEPS,
observers: Vec::default(),
dimension,
}
}
/// Creates a new [`Minimizer`] with the given (boxed) [`Algorithm`] and `dimension` set to the number
/// of free parameters in the minimization problem.
pub fn new_from_box(algorithm: Box<dyn Algorithm<T, U, E>>, dimension: usize) -> Self {
Self {
status: Status::default(),
algorithm,
bounds: None,
max_steps: Self::DEFAULT_MAX_STEPS,
observers: Vec::default(),
dimension,
}
}
fn reset_status(&mut self) {
let new_status = Status {
bounds: self.status.bounds.clone(),
..Default::default()
};
self.status = new_status;
}
/// Set the [`Algorithm`] used by the [`Minimizer`].
pub fn with_algorithm<A: Algorithm<T, U, E> + 'static>(mut self, algorithm: &A) -> Self {
self.algorithm = Box::new(dyn_clone::clone(algorithm));
self
}
/// Set the maximum number of steps to perform before failure (default: 4000).
pub const fn with_max_steps(mut self, max_steps: usize) -> Self {
self.max_steps = max_steps;
self
}
/// Sets the current list of [`Observer`]s of the [`Minimizer`].
pub fn with_observers(mut self, observers: Vec<Box<dyn Observer<T, U>>>) -> Self {
self.observers = observers;
self
}
/// Adds a single [`Observer`] to the [`Minimizer`].
pub fn with_observer<O>(mut self, observer: O) -> Self
where
O: Observer<T, U> + 'static,
{
self.observers.push(Box::new(observer));
self
}
/// Sets all [`Bound`]s of the [`Minimizer`]. This can be [`None`] for an unbounded problem, or
/// [`Some`] [`Vec<(T, T)>`] with length equal to the number of free parameters. Individual
/// upper or lower bounds can be unbounded by setting them equal to `T::infinity()` or
/// `T::neg_infinity()` (e.g. `f64::INFINITY` and `f64::NEG_INFINITY`).
///
/// # Panics
///
/// This function will panic if the number of bounds is not equal to the number of free
/// parameters.
pub fn with_bounds(mut self, bounds: Option<Vec<(T, T)>>) -> Self {
if let Some(bounds) = bounds {
assert!(bounds.len() == self.dimension);
self.bounds = Some(bounds.into_iter().map(Bound::from).collect());
} else {
self.bounds = None
}
self.status.bounds.clone_from(&self.bounds);
self
}
/// Sets the [`Bound`] of the parameter at the given index.
pub fn with_bound(mut self, index: usize, bound: Option<(T, T)>) -> Self {
if let Some(bounds) = &mut self.bounds {
if let Some(bound) = bound {
bounds[index] = Bound::from(bound);
} else {
bounds[index] = Bound::NoBound;
}
} else {
let mut bounds = vec![Bound::default(); self.dimension];
if let Some(bound) = bound {
bounds[index] = Bound::from(bound);
} else {
bounds[index] = Bound::NoBound;
}
self.bounds = Some(bounds);
}
self.status.bounds.clone_from(&self.bounds);
self
}
/// Minimize the given [`Function`] starting at the point `x0`.
///
/// This method first runs [`Algorithm::initialize`], then runs [`Algorithm::step`] in a loop,
/// terminating if [`Algorithm::check_for_termination`] returns `true` or if
/// the maximum number of allowed steps is exceeded. Each step will be followed by a sequential
/// call to all given [`Observer`]s' callback functions, which will use the [`Status`] received
/// from that step's call to [`Algorithm::get_status`]. Finally, regardless of convergence,
/// [`Algorithm::postprocessing`] is called. If the algorithm did not converge in the given
/// step limit, the [`Status::message`] will be set to `"MAX EVALS"` at termination.
///
/// # Errors
///
/// Returns an `Err(E)` if the evaluation fails. See [`Function::evaluate`] for more
/// information.
///
/// # Panics
///
/// This method will panic if the length of `x0` is not equal to the dimension of the problem
/// (number of free parameters) or if any values of `x0` are outside the [`Bound`]s given to the
/// [`Minimizer`].
pub fn minimize(
&mut self,
func: &dyn Function<T, U, E>,
x0: &[T],
user_data: &mut U,
) -> Result<(), E> {
assert!(x0.len() == self.dimension);
init_ctrl_c_handler();
reset_ctrl_c_handler();
self.reset_status();
if let Some(bounds) = &self.bounds {
for (i, (x_i, bound_i)) in x0.iter().zip(bounds).enumerate() {
assert!(
bound_i.contains(x_i),
"Parameter #{} = {} is outside of the given bound: {}",
i,
x_i,
bound_i
)
}
}
self.status.x0 = DVector::from_column_slice(x0);
self.algorithm
.initialize(func, x0, self.bounds.as_ref(), user_data, &mut self.status)?;
let mut current_step = 0;
let mut observer_termination = false;
while current_step <= self.max_steps
&& !observer_termination
&& !self.algorithm.check_for_termination(
func,
self.bounds.as_ref(),
user_data,
&mut self.status,
)?
&& !is_ctrl_c_pressed()
{
self.algorithm.step(
current_step,
func,
self.bounds.as_ref(),
user_data,
&mut self.status,
)?;
current_step += 1;
if !self.observers.is_empty() {
for observer in self.observers.iter_mut() {
observer_termination =
!observer.callback(current_step, &mut self.status, user_data)
|| observer_termination;
}
}
}
self.algorithm
.postprocessing(func, self.bounds.as_ref(), user_data, &mut self.status)?;
if current_step > self.max_steps && !self.status.converged {
self.status.update_message("MAX EVALS");
}
if is_ctrl_c_pressed() {
self.status.update_message("Ctrl-C Pressed");
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::convert::Infallible;
use crate::{algorithms::LBFGSB, Algorithm, Minimizer};
#[test]
#[allow(unused_variables)]
fn test_minimizer_constructors() {
let algo: LBFGSB<f64, (), Infallible> = LBFGSB::default();
let minimizer = Minimizer::new(&algo, 5);
let algo_boxed: Box<dyn Algorithm<f64, (), Infallible>> = Box::new(algo);
let minimizer_from_box = Minimizer::new_from_box(algo_boxed, 5);
}
}