Struct gamemath::Vec4[][src]

pub struct Vec4<T> {
    pub x: T,
    pub y: T,
    pub z: T,
    pub w: T,
}

A four-component Euclidean vector usefull for linear algebra computation in game development and 3D rendering.

Fields

The X/first component of the vector.

The Y/second component of the vector.

The Z/third component of the vector.

The W/fourth component of the vector.

Methods

impl<T> Vec4<T> where
    T: Copy + Debug + PartialEq + Default + Sub<Output = T> + Mul<Output = T> + Add<Output = T>, 
[src]

Constructs a new Vec4<T> from three initial values.

Examples

use gamemath::Vec4;

let v = Vec4::new(1.0, 5.0, 23.0, -7.0);

assert_eq!(v.x, 1.0);
assert_eq!(v.y, 5.0);
assert_eq!(v.z, 23.0);
assert_eq!(v.w, -7.0);

Calculates the dot/scalar product of two Vec4<T>s.

The calling object is considered the left value and the argument object is considered the right value.

Examples

use gamemath::Vec4;

let v1 = Vec4::new(1.0, 2.0, 3.0, 4.0);
let v2 = Vec4::new(5.0, 6.0, 7.0, 8.0);

assert_eq!(v1.dot(v2), 70.0);
assert_eq!(v2.dot(v1), 70.0);

Fills all components of the calling Vec4<T> with the provided value.

Examples

use gamemath::Vec4;

let mut v = Vec4::new(0.0, 0.0, 0.0, 0.0);

v.fill(6.0);

assert_eq!(v, Vec4::new(6.0, 6.0, 6.0, 6.0));

Calculates the squared length/magnitude/norm of a Vec4<T>. This saves an expensive square root calculation compared to calculating the actual length, and comparing two squared lengths can therefore often be cheaper than, and yield the same result as, computing two real lengths.

Also usefull for data types that does not implement a square root function, i.e. non-floating-point data types.

Examples

use gamemath::Vec4;

let v = Vec4::new(1.0, 2.0, 3.0, 4.0);

assert_eq!(v.length_squared(), 30.0);

impl Vec4<f32>
[src]

Calculates the real length/magnitude/norm of a Vec4<f32>. This results in an expensive square root calculation, and you might want to consider using a squared length instead when possible.

Examples

use gamemath::Vec4;

let v = Vec4::new(1.0_f32, 4.0_f32, 4.0_f32, 16.0_f32);

assert_eq!(v.length(), 17.0_f32);

Calculates and returns the unit vector representation of a Vec4<f32>. This results in an an expensive square root calculation.

Examples

use gamemath::Vec4;

let v = Vec4::new(1.0_f32, 2.0_f32, 2.0_f32, 4.0_f32);

assert_eq!(v.normalized(), Vec4::new(0.2_f32, 0.4_f32, 0.4_f32, 0.8_f32));

Normalizes a Vec4<f32> into its unit vector representation. This results in an an expensive square root calculation.

Examples

use gamemath::Vec4;

let mut v = Vec4::new(1.0_f32, 2.0_f32, 2.0_f32, 4.0_f32);

v.normalize();

assert_eq!(v, Vec4::new(0.2_f32, 0.4_f32, 0.4_f32, 0.8_f32));

impl Vec4<f64>
[src]

Calculates the real length/magnitude/norm of a Vec4<f64>. This results in an expensive square root calculation, and you might want to consider using a squared length instead when possible.

Examples

use gamemath::Vec4;

let v = Vec4::new(1.0_f64, 4.0_f64, 4.0_f64, 16.0_f64);

assert_eq!(v.length(), 17.0_f64);

Calculates and returns the unit vector representation of a Vec4<f64>. This results in an an expensive square root calculation.

Examples

use gamemath::Vec4;

let v = Vec4::new(1.0_f64, 2.0_f64, 2.0_f64, 4.0_f64);

assert_eq!(v.normalized(), Vec4::new(0.2_f64, 0.4_f64, 0.4_f64, 0.8_f64));

Normalizes a Vec4<f64> into its unit vector representation. This results in an an expensive square root calculation.

Examples

use gamemath::Vec4;

let mut v = Vec4::new(1.0_f64, 2.0_f64, 2.0_f64, 4.0_f64);

v.normalize();

assert_eq!(v, Vec4::new(0.2_f64, 0.4_f64, 0.4_f64, 0.8_f64));

Trait Implementations

impl<T> From<Vec4<T>> for Vec2<T>
[src]

Performs the conversion.

impl<T> From<Vec4<T>> for Vec3<T>
[src]

Performs the conversion.

impl<T: Clone> Clone for Vec4<T>
[src]

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

impl<T: Copy> Copy for Vec4<T>
[src]

impl<T: Debug> Debug for Vec4<T>
[src]

Formats the value using the given formatter. Read more

impl<T: PartialEq> PartialEq for Vec4<T>
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<T: Default> Default for Vec4<T>
[src]

Returns the "default value" for a type. Read more

impl<T> From<(T, T, T, T)> for Vec4<T>
[src]

Performs the conversion.

impl<T: Copy> From<[T; 4]> for Vec4<T>
[src]

Performs the conversion.

impl<T: Default> From<Vec2<T>> for Vec4<T>
[src]

Performs the conversion.

impl<T: Default> From<Vec3<T>> for Vec4<T>
[src]

Performs the conversion.

impl<T: Copy> From<T> for Vec4<T>
[src]

Performs the conversion.

impl<T> Index<usize> for Vec4<T>
[src]

The returned type after indexing.

Performs the indexing (container[index]) operation.

impl<T> IndexMut<usize> for Vec4<T>
[src]

Performs the mutable indexing (container[index]) operation.

impl<T: Add<Output = T>> Add for Vec4<T>
[src]

The resulting type after applying the + operator.

Performs the + operation.

impl<T: AddAssign> AddAssign for Vec4<T>
[src]

Performs the += operation.

impl<T: Sub<Output = T>> Sub for Vec4<T>
[src]

The resulting type after applying the - operator.

Performs the - operation.

impl<T: SubAssign> SubAssign for Vec4<T>
[src]

Performs the -= operation.

impl<T: Copy + Mul<Output = T>> Mul<T> for Vec4<T>
[src]

The resulting type after applying the * operator.

Performs the * operation.

impl<T: Copy + MulAssign> MulAssign<T> for Vec4<T>
[src]

Performs the *= operation.

impl<T: Neg<Output = T>> Neg for Vec4<T>
[src]

The resulting type after applying the - operator.

Performs the unary - operation.

impl Mul<Vec4<f32>> for Mat4
[src]

The resulting type after applying the * operator.

Performs the * operation.

impl From<Vec4<f32>> for Quat
[src]

Performs the conversion.

Auto Trait Implementations

impl<T> Send for Vec4<T> where
    T: Send

impl<T> Sync for Vec4<T> where
    T: Sync