game_features/stat.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
use std::collections::HashMap;
use std::fmt::Debug;
use std::hash::Hash;
// Different properties of a player/item/entity
/// The definition of a stat.
/// A stat is a named float value optionally constrained between two other values and with a
/// default value. It is used to create effects, conditions and in general to hold state
/// for each entity.
/// For example, it can be used to contain the health or mana of an entity just as well as it
/// can be used to keep track of the number of enemies positioned around an entity.
#[derive(Debug, Clone, Serialize, Deserialize, new, Builder)]
pub struct StatDefinition<K> {
/// The key.
pub key: K,
/// The name.
pub name: String,
/// The computer friendly name.
pub friendly_name: String,
/// The default value.
pub default_value: f64,
/// The minimum value.
#[new(default)]
pub min_value: Option<f64>,
/// The maximum value.
#[new(default)]
pub max_value: Option<f64>,
/// The icon of this stat.
#[new(default)]
pub icon_path: Option<String>,
}
impl<K: Clone> StatDefinition<K> {
/// Creates the default StatInstance for this StatDefinition.
pub fn default_instance(&self) -> StatInstance<K> {
StatInstance::new(self.key.clone(), self.default_value)
}
}
/// An instance of a stat.
/// Contains a base value as well as a value after applying the stat effectors.
#[derive(Debug, Clone, Serialize, Deserialize, new, Builder)]
pub struct StatInstance<K> {
/// The key of the stat.
pub key: K,
/// The base value of the stat.
pub value: f64,
/// The value of this stat after applying the effectors.
#[new(value = "value")]
pub value_with_effectors: f64,
}
/// The definitions of all known stats.
#[derive(Debug, Clone, Serialize, Deserialize, new)]
pub struct StatDefinitions<K: Hash + Eq> {
/// The definitions.
pub defs: HashMap<K, StatDefinition<K>>,
}
impl<K: Hash + Eq> Default for StatDefinitions<K> {
fn default() -> Self {
Self {
defs: HashMap::default(),
}
}
}
impl<K: Hash + Eq + Clone> StatDefinitions<K> {
/// Converts the `StatDefinitions` into a `StatSet` using the default stat values.
pub fn to_statset(&self) -> StatSet<K> {
let instances = self
.defs
.iter()
.map(|(k, v)| (k.clone(), v.default_instance()))
.collect::<HashMap<_, _>>();
StatSet::new(instances)
}
}
impl<K: Hash + Eq + Clone> From<Vec<StatDefinition<K>>> for StatDefinitions<K> {
fn from(t: Vec<StatDefinition<K>>) -> Self {
let defs = t
.into_iter()
.map(|s| (s.key.clone(), s))
.collect::<HashMap<_, _>>();
Self::new(defs)
}
}
/// Holds the instances of all the stats an entity has.
#[derive(Debug, Clone, Default, Serialize, Deserialize, new)]
pub struct StatSet<K: Hash + Eq> {
/// The stats.
pub stats: HashMap<K, StatInstance<K>>,
}
//impl<K: Hash+Eq> StatSet<K> {
// pub fn update(&mut self, delta_time: f64, stat_set: &mut StatSet<K>) {
// let mut rm_idx = vec![];
// for (idx, stat) in self.effectors.iter_mut().enumerate() {
// // TODO: apply modifier rules and ordering.
//
// if let Some(left) = stat.disable_in.as_mut() {
// *left -= delta_time;
// if *left <= 0.0 {
// rm_idx.push(idx);
// }
// }
// }
//
// rm_idx.reverse();
// for idx in rm_idx {
// self.effectors.swap_remove(idx);
// }
// }
//}
/// Condition based on a stat to activate something.
#[derive(Clone, Debug, Serialize, Deserialize, new)]
pub struct StatCondition<K> {
/// The key of the stat.
pub stat_key: K,
/// The type of condition.
pub condition: StatConditionType,
}
impl<K: Hash + Eq + Debug> StatCondition<K> {
/// Checks if this stat condition is met using for the provided `StatSet` using the known
/// `StatDefinitions`.
pub fn check(&self, stats: &StatSet<K>, stat_defs: &StatDefinitions<K>) -> bool {
let v = stats.stats.get(&self.stat_key).expect(&format!(
"Requested stat key {:?} is not in provided StatSet.",
self.stat_key
));
let def = stat_defs.defs.get(&self.stat_key).expect(&format!(
"Requested stat key {:?} is not in provided StatDefinitions.",
self.stat_key
));
self.condition
.is_true(v.value, def.min_value, def.max_value)
}
}
/// A condition based on a stat's value.
#[derive(Clone, Serialize, Deserialize, new, Debug)]
pub enum StatConditionType {
/// The stat value must be higher or equal to this value.
MinValue(f64),
/// The stat value must be between these values.
BetweenValue(f64, f64),
/// The stat value must be lower or equal to this value.
MaxValue(f64),
/// The minimum progress of the value between its minimum and maximum.
/// This calculates the distance between the minimum and maximum values, then assigns
/// a value between 0.0 and 1.0 that correspond to the absolute distance from the minimum.
/// If the minimum value is 10 and the maximum is 20 and we have a value of 15, then this
/// corresponds to a "distance" of 0.5 (50%!) of the way between 10 and 20.
MinPercent(f64),
/// The minimum progress of the value between its minimum and maximum.
/// This calculates the distance between the minimum and maximum values, then assigns
/// a value between 0.0 and 1.0 that correspond to the absolute distance from the minimum.
/// If the minimum value is 10 and the maximum is 20 and we have a value of 15, then this
/// corresponds to a "distance" of 0.5 (50%!) of the way between 10 and 20.
BetweenPercent(f64, f64),
/// The minimum progress of the value between its minimum and maximum.
/// This calculates the distance between the minimum and maximum values, then assigns
/// a value between 0.0 and 1.0 that correspond to the absolute distance from the minimum.
/// If the minimum value is 10 and the maximum is 20 and we have a value of 15, then this
/// corresponds to a "distance" of 0.5 (50%!) of the way between 10 and 20.
MaxPercent(f64),
/// The value is divisible by this value.
/// DivisibleBy(2) is equivalent to (value % 2 == 0).
DivisibleBy(i32),
}
impl StatConditionType {
/// Checks if the condition is true using the actual value, as well as the minimum and maximum
/// values of the stat (found in the `StatDefinition`).
pub fn is_true(&self, value: f64, min_value: Option<f64>, max_value: Option<f64>) -> bool {
let percent = if let (Some(min_value), Some(max_value)) = (min_value, max_value) {
Some((value - min_value) / (max_value - min_value))
} else {
None
};
match &*self {
StatConditionType::MinValue(v) => value >= *v,
StatConditionType::BetweenValue(min, max) => value >= *min && value <= *max,
StatConditionType::MaxValue(v) => value <= *v,
StatConditionType::MinPercent(p) => {
percent.expect("This stat doesn't have min/max values.") >= *p
}
StatConditionType::BetweenPercent(min, max) => {
percent.expect("This stat doesn't have min/max values.") >= *min
&& percent.expect("This stat doesn't have min/max values.") <= *max
}
StatConditionType::MaxPercent(p) => {
percent.expect("This stat doesn't have min/max values.") <= *p
}
StatConditionType::DivisibleBy(p) => value as i32 % p == 0,
}
}
}