1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
//! # G29 Driver
//!
//! This library provides a Rust interface for Logitech G29 wheel/pedal and force feedback control.
//! It utilizes the `hidapi` crate to interact with the G29 hardware.
//!
//! ## Usage
//!
//! ```rust
//! use g29::{G29, G29Driver};
//!
//! fn main() {
//! // Create a new G29 instance
//! let mut g29 = G29::new();
//! // set force feedback for G29 controller - make sure to set the Logitech to PS3 Mode
//! g29.g29.lock().unwrap().force_feedback_constant(0.6);
//! // Start the reading thread to continuously read input from the G29 device
//! g29.start_pumping();
//! loop {
//! println!("steering = {:?}", g29.g29.lock().unwrap().get_state());
//! }
//! }
//! ```
//!
//!
//
//
//! ## Example
//!
//! Interacting with the driver without starting a thread to set force feedback.
//!
//! ```rust
//! use g29::G29Driver;
//!
//! fn main() {
//! // Create a new G29 driver instance
//! let mut g29 = G29Driver::new();
//!
//! // Reset the G29 device, including steering wheel calibration
//! g29.reset();
//!
//! // Example: Set autocenter with a strength of 0.5 and a rate of 0.05
//! g29.set_autocenter(0.5, 0.05);
//!
//! // Other operations and configurations can be performed here
//! }
//! ```
//!
use core::panic;
use hidapi::{HidApi, HidDevice};
use std::{
collections::HashMap,
sync::{Arc, Mutex},
thread::{self, JoinHandle},
time::Duration,
};
///! The `G29Driver` struct is the underlying driver for the G29 device, managing communication and state.
#[derive(Debug)]
pub struct G29Driver {
device: HidDevice,
cache: Vec<u8>,
state: HashMap<&'static str, u8>,
}
impl G29Driver {
/// Initializes a new G29 driver, opens the device, and sets initial state.
pub fn new() -> Self {
let api = HidApi::new().unwrap();
let device = api.open(0x046d, 0xc24f).unwrap();
let mut state = HashMap::new();
state.insert("steering", 255);
state.insert("throttle", 255);
state.insert("clutch", 255);
state.insert("brake", 255);
Self {
device,
cache: vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], //Vec::new(),
state,
}
}
// Write to the G29Driver Driver
/// Resets the G29 device, including steering wheel calibration.
/// calibration the steering wheel of the G2
///
pub fn reset(&self) {
self.device
.write(&[0xf8, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00])
.unwrap();
self.device
.write(&[0xf8, 0x09, 0x05, 0x01, 0x01, 0x00, 0x00])
.unwrap();
// wait for setting the calibration
thread::sleep(Duration::from_secs(10));
}
/// Connects to the G29 device by pumping data and resetting.
pub fn connect(&mut self) {
self.pump(10);
self.reset();
}
/// Sets constant force feedback on the G29 device.
pub fn force_feedback_constant(&self, val: f32) {
if val < 0.0 || val > 1.0 {
panic!("Value must be in range of 0 to 1");
}
let val_scale = (val * 255.0).round() as u8;
let msg = [0x14, 0x00, val_scale, 0x00, 0x00, 0x00, 0x00];
self.device.write(&msg).unwrap();
thread::sleep(Duration::from_secs(1));
}
/// Configures autocentering strength and rate.
/// default value to be used strength = 0.5 and rate = 0.05
pub fn set_autocenter(&self, strength: f32, rate: f32) {
if (strength < 0.0) || (strength > 1.0) {
panic!("Strength must be in range of 0.0 to 1.0");
}
if (rate < 0.0) || (rate > 1.0) {
panic!("Rate must be in range of 0.0 to 1.0 ");
}
// autocenter Up
let up_msg = [0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
self.device.write(&up_msg).unwrap();
//scale Rate 0 -> 255 and Strength to 0 ->15
let strength_scale = (strength * 15.0).round() as u8;
let rate_scale = (rate * 255.0).round() as u8;
self.device
.write(&[
0xfe,
0x0d,
strength_scale,
strength_scale,
rate_scale,
0x00,
0x00,
0x00,
])
.unwrap();
thread::sleep(Duration::from_secs(10));
}
/// Turns off force feedback on the G29 device.
pub fn force_off(&self) {
self.device
.write(&[0xf3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
.unwrap();
}
/// Reads data from the G29 device buffer.
pub fn pump(&mut self, timeout: i32) -> usize {
let mut buf = [0u8; 16]; //16
let data = self.device.read_timeout(&mut buf, timeout).unwrap();
let byte_array = buf[..data].to_vec();
if byte_array.len() >= 12 {
self.update_state(&byte_array);
self.cache = byte_array;
}
return data;
}
/// Continuously pumps data in a loop.
pub fn read_loop(&mut self) {
loop {
self.pump(10);
}
}
/// Updates the internal state based on the latest data.
pub fn update_state(&mut self, byte_array: &Vec<u8>) {
if self.cache.is_empty() {
panic!("cache is Empty");
}
//Update state
// steering
if byte_array[4] != self.cache[4] || byte_array[5] != self.cache[5] {
let steering_val = self.calculate_steering(&byte_array[5], &byte_array[4]);
//println!("steering_scaled = {}", steering_val);
self.state.insert("steering", steering_val);
}
//throttle
if byte_array[6] != self.cache[6] {
self.state.insert("throttle", byte_array[6]);
}
//brake
if byte_array[7] != self.cache[7] {
self.state.insert("brake", byte_array[7]);
}
//clutch
if byte_array[8] != self.cache[8] {
self.state.insert("clutch", byte_array[8]);
}
println!("update_state = {:?}", self.state);
}
/// Retrieves the current state of the G29 device.
pub fn get_state(&self) -> &HashMap<&str, u8> {
&self.state
}
/// Calculates the scaled steering value based on raw input.
pub fn calculate_steering(&self, start: &u8, end: &u8) -> u8 {
// start from 0 to 255
// end from 0 to 255
// scale between 0 -> 100
let start_scale = (*start as f32 / 256.0) * (100.0 - (100.0 / 256.0));
// scale between 0 -> 3
let end_scale = (*end as f32 / 255.0) * (100.0 / 256.0);
return (start_scale + end_scale).round() as u8;
}
}
// ## G29 Struct
/// The `G29` struct represents the G29 device and provides methods for controlling and interacting with it.
#[derive(Debug)]
pub struct G29 {
pub g29: Arc<Mutex<G29Driver>>,
reading_thread: Option<JoinHandle<()>>,
}
impl G29 {
/// Creates a new G29 instance.
pub fn new() -> Self {
Self {
g29: Arc::new(Mutex::new(G29Driver::new())),
reading_thread: None,
}
}
/// Starts a thread to continuously read input from the G29 device.
pub fn start_pumping(&mut self) {
let local_g29 = self.g29.clone();
self.reading_thread = Some(thread::spawn(move || {
local_g29.lock().unwrap().read_loop();
}));
}
/// Stops the reading thread.
pub fn stop_pumping(&mut self) {
if let Some(handle) = self.reading_thread.take() {
handle.join().unwrap();
} else {
println!("No Thread spawned");
}
}
}