use nalgebra::Vector3;
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Plane {
pub normal: Vector3<f32>,
pub d: f32,
}
impl Default for Plane {
#[inline]
fn default() -> Self {
Plane {
normal: Vector3::new(0.0, 1.0, 0.0),
d: 0.0,
}
}
}
impl Plane {
#[inline]
pub fn from_normal_and_point(normal: &Vector3<f32>, point: &Vector3<f32>) -> Option<Self> {
normal
.try_normalize(f32::EPSILON)
.map(|normalized_normal| Self {
normal: normalized_normal,
d: -point.dot(&normalized_normal),
})
}
#[inline]
pub fn from_triangle(a: &Vector3<f32>, b: &Vector3<f32>, c: &Vector3<f32>) -> Option<Self> {
let normal = (b - a).cross(&(c - a));
Self::from_normal_and_point(&normal, a)
}
#[inline]
pub fn from_abcd(a: f32, b: f32, c: f32, d: f32) -> Option<Self> {
let normal = Vector3::new(a, b, c);
let len = normal.norm();
if len == 0.0 {
None
} else {
let coeff = 1.0 / len;
Some(Self {
normal: normal.scale(coeff),
d: d * coeff,
})
}
}
#[inline]
pub fn dot(&self, point: &Vector3<f32>) -> f32 {
self.normal.dot(point) + self.d
}
#[inline]
pub fn distance(&self, point: &Vector3<f32>) -> f32 {
self.dot(point).abs()
}
#[inline]
pub fn project(&self, point: &Vector3<f32>) -> Vector3<f32> {
point - self.normal.scale(self.normal.dot(point) + self.d)
}
pub fn intersection_point(&self, b: &Plane, c: &Plane) -> Vector3<f32> {
let f = -1.0 / self.normal.dot(&b.normal.cross(&c.normal));
let v1 = b.normal.cross(&c.normal).scale(self.d);
let v2 = c.normal.cross(&self.normal).scale(b.d);
let v3 = self.normal.cross(&b.normal).scale(c.d);
(v1 + v2 + v3).scale(f)
}
}
#[cfg(test)]
mod test {
use crate::plane::Plane;
use nalgebra::Vector3;
#[test]
fn plane_sanity_tests() {
let plane = Plane::from_normal_and_point(
&Vector3::new(0.0, 10.0, 0.0),
&Vector3::new(0.0, 3.0, 0.0),
);
assert!(plane.is_some());
let plane = plane.unwrap();
assert_eq!(plane.normal.x, 0.0);
assert_eq!(plane.normal.y, 1.0);
assert_eq!(plane.normal.z, 0.0);
assert_eq!(plane.d, -3.0);
let plane = Plane::from_normal_and_point(
&Vector3::new(0.0, 0.0, 0.0),
&Vector3::new(0.0, 0.0, 0.0),
);
assert!(plane.is_none());
let plane = Plane::from_abcd(0.0, 0.0, 0.0, 0.0);
assert!(plane.is_none())
}
#[test]
fn test_default_for_plane() {
assert_eq!(
Plane::default(),
Plane {
normal: Vector3::new(0.0, 1.0, 0.0),
d: 0.0,
}
);
}
#[test]
fn test_plane_from_abcd() {
assert_eq!(Plane::from_abcd(0.0, 0.0, 0.0, 0.0), None);
assert_eq!(
Plane::from_abcd(1.0, 1.0, 1.0, 0.0),
Some(Plane {
normal: Vector3::new(0.57735026, 0.57735026, 0.57735026),
d: 0.0
})
);
}
#[test]
fn test_plane_dot() {
let plane = Plane::from_normal_and_point(
&Vector3::new(0.0, 0.0, 1.0),
&Vector3::new(0.0, 0.0, 0.0),
);
assert!(plane.is_some());
assert_eq!(plane.unwrap().dot(&Vector3::new(1.0, 1.0, 1.0)), 1.0);
}
#[test]
fn test_plane_distance() {
let plane = Plane::from_normal_and_point(
&Vector3::new(0.0, 0.0, 1.0),
&Vector3::new(0.0, 0.0, 0.0),
);
assert!(plane.is_some());
assert_eq!(plane.unwrap().distance(&Vector3::new(0.0, 0.0, 0.0)), 0.0);
assert_eq!(plane.unwrap().distance(&Vector3::new(1.0, 0.0, 0.0)), 0.0);
assert_eq!(plane.unwrap().distance(&Vector3::new(0.0, 1.0, 0.0)), 0.0);
assert_eq!(plane.unwrap().distance(&Vector3::new(0.0, 0.0, 1.0)), 1.0);
}
#[test]
fn test_plane_intersection_point() {
let plane = Plane::from_normal_and_point(
&Vector3::new(0.0, 0.0, 1.0),
&Vector3::new(0.0, 0.0, 0.0),
);
let plane2 = Plane::from_normal_and_point(
&Vector3::new(0.0, 1.0, 0.0),
&Vector3::new(0.0, 0.0, 0.0),
);
let plane3 = Plane::from_normal_and_point(
&Vector3::new(1.0, 0.0, 0.0),
&Vector3::new(0.0, 0.0, 0.0),
);
assert!(plane.is_some());
assert!(plane2.is_some());
assert!(plane3.is_some());
assert_eq!(
plane
.unwrap()
.intersection_point(&plane2.unwrap(), &plane3.unwrap()),
Vector3::new(0.0, 0.0, 0.0)
);
}
}