fyrox_math/
plane.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// Copyright (c) 2019-present Dmitry Stepanov and Fyrox Engine contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

use nalgebra::Vector3;

#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Plane {
    pub normal: Vector3<f32>,
    pub d: f32,
}

impl Default for Plane {
    #[inline]
    fn default() -> Self {
        Plane {
            normal: Vector3::new(0.0, 1.0, 0.0),
            d: 0.0,
        }
    }
}

impl Plane {
    /// Creates plane from a point and normal vector at that point.
    /// May fail if normal is degenerated vector.
    #[inline]
    pub fn from_normal_and_point(normal: &Vector3<f32>, point: &Vector3<f32>) -> Option<Self> {
        normal
            .try_normalize(f32::EPSILON)
            .map(|normalized_normal| Self {
                normal: normalized_normal,
                d: -point.dot(&normalized_normal),
            })
    }

    /// Tries to create a plane from three points (triangle). May fail if the triangle is degenerated
    /// (collapsed into a point or a line).
    #[inline]
    pub fn from_triangle(a: &Vector3<f32>, b: &Vector3<f32>, c: &Vector3<f32>) -> Option<Self> {
        let normal = (b - a).cross(&(c - a));
        Self::from_normal_and_point(&normal, a)
    }

    /// Creates plane using coefficients of plane equation Ax + By + Cz + D = 0
    /// May fail if length of normal vector is zero (normal is degenerated vector).
    #[inline]
    pub fn from_abcd(a: f32, b: f32, c: f32, d: f32) -> Option<Self> {
        let normal = Vector3::new(a, b, c);
        let len = normal.norm();
        if len == 0.0 {
            None
        } else {
            let coeff = 1.0 / len;
            Some(Self {
                normal: normal.scale(coeff),
                d: d * coeff,
            })
        }
    }

    #[inline]
    pub fn dot(&self, point: &Vector3<f32>) -> f32 {
        self.normal.dot(point) + self.d
    }

    #[inline]
    pub fn distance(&self, point: &Vector3<f32>) -> f32 {
        self.dot(point).abs()
    }

    /// Projects the given point onto the plane along the normal vector of the plane.
    #[inline]
    pub fn project(&self, point: &Vector3<f32>) -> Vector3<f32> {
        point - self.normal.scale(self.normal.dot(point) + self.d)
    }

    /// <http://geomalgorithms.com/a05-_intersect-1.html>
    pub fn intersection_point(&self, b: &Plane, c: &Plane) -> Vector3<f32> {
        let f = -1.0 / self.normal.dot(&b.normal.cross(&c.normal));

        let v1 = b.normal.cross(&c.normal).scale(self.d);
        let v2 = c.normal.cross(&self.normal).scale(b.d);
        let v3 = self.normal.cross(&b.normal).scale(c.d);

        (v1 + v2 + v3).scale(f)
    }
}

#[cfg(test)]
mod test {
    use crate::plane::Plane;
    use nalgebra::Vector3;

    #[test]
    fn plane_sanity_tests() {
        // Computation test
        let plane = Plane::from_normal_and_point(
            &Vector3::new(0.0, 10.0, 0.0),
            &Vector3::new(0.0, 3.0, 0.0),
        );
        assert!(plane.is_some());
        let plane = plane.unwrap();
        assert_eq!(plane.normal.x, 0.0);
        assert_eq!(plane.normal.y, 1.0);
        assert_eq!(plane.normal.z, 0.0);
        assert_eq!(plane.d, -3.0);

        // Degenerated normal case
        let plane = Plane::from_normal_and_point(
            &Vector3::new(0.0, 0.0, 0.0),
            &Vector3::new(0.0, 0.0, 0.0),
        );
        assert!(plane.is_none());

        let plane = Plane::from_abcd(0.0, 0.0, 0.0, 0.0);
        assert!(plane.is_none())
    }

    #[test]
    fn test_default_for_plane() {
        assert_eq!(
            Plane::default(),
            Plane {
                normal: Vector3::new(0.0, 1.0, 0.0),
                d: 0.0,
            }
        );
    }

    #[test]
    fn test_plane_from_abcd() {
        assert_eq!(Plane::from_abcd(0.0, 0.0, 0.0, 0.0), None);
        assert_eq!(
            Plane::from_abcd(1.0, 1.0, 1.0, 0.0),
            Some(Plane {
                normal: Vector3::new(0.57735026, 0.57735026, 0.57735026),
                d: 0.0
            })
        );
    }

    #[test]
    fn test_plane_dot() {
        let plane = Plane::from_normal_and_point(
            &Vector3::new(0.0, 0.0, 1.0),
            &Vector3::new(0.0, 0.0, 0.0),
        );
        assert!(plane.is_some());
        assert_eq!(plane.unwrap().dot(&Vector3::new(1.0, 1.0, 1.0)), 1.0);
    }

    #[test]
    fn test_plane_distance() {
        let plane = Plane::from_normal_and_point(
            &Vector3::new(0.0, 0.0, 1.0),
            &Vector3::new(0.0, 0.0, 0.0),
        );
        assert!(plane.is_some());
        assert_eq!(plane.unwrap().distance(&Vector3::new(0.0, 0.0, 0.0)), 0.0);
        assert_eq!(plane.unwrap().distance(&Vector3::new(1.0, 0.0, 0.0)), 0.0);
        assert_eq!(plane.unwrap().distance(&Vector3::new(0.0, 1.0, 0.0)), 0.0);
        assert_eq!(plane.unwrap().distance(&Vector3::new(0.0, 0.0, 1.0)), 1.0);
    }

    #[test]
    fn test_plane_intersection_point() {
        let plane = Plane::from_normal_and_point(
            &Vector3::new(0.0, 0.0, 1.0),
            &Vector3::new(0.0, 0.0, 0.0),
        );
        let plane2 = Plane::from_normal_and_point(
            &Vector3::new(0.0, 1.0, 0.0),
            &Vector3::new(0.0, 0.0, 0.0),
        );
        let plane3 = Plane::from_normal_and_point(
            &Vector3::new(1.0, 0.0, 0.0),
            &Vector3::new(0.0, 0.0, 0.0),
        );
        assert!(plane.is_some());
        assert!(plane2.is_some());
        assert!(plane3.is_some());

        assert_eq!(
            plane
                .unwrap()
                .intersection_point(&plane2.unwrap(), &plane3.unwrap()),
            Vector3::new(0.0, 0.0, 0.0)
        );
    }
}