fyrox_impl/scene/particle_system/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
//! Contains all structures and methods to create and manage particle systems. See [`ParticleSystem`] docs for more
//! info and usage examples.
use crate::scene::mesh::buffer::VertexTrait;
use crate::scene::node::RdcControlFlow;
use crate::{
core::{
algebra::{Point3, Vector2, Vector3},
color_gradient::ColorGradient,
log::Log,
math::{aabb::AxisAlignedBoundingBox, TriangleDefinition},
pool::Handle,
reflect::prelude::*,
sstorage::ImmutableString,
uuid::{uuid, Uuid},
variable::InheritableVariable,
visitor::prelude::*,
TypeUuidProvider,
},
material::{self, Material, MaterialResource, PropertyValue},
rand::{prelude::StdRng, Error, RngCore, SeedableRng},
renderer::{self, bundle::RenderContext},
scene::{
base::{Base, BaseBuilder},
graph::Graph,
mesh::RenderPath,
node::{Node, NodeTrait, UpdateContext},
particle_system::{
draw::Vertex,
emitter::{Emit, Emitter},
particle::Particle,
},
},
};
use fyrox_core::value_as_u8_slice;
use fyrox_graph::BaseSceneGraph;
use std::{
cmp::Ordering,
fmt::Debug,
ops::{Deref, DerefMut},
};
pub(crate) mod draw;
pub mod emitter;
pub mod particle;
/// Pseudo-random numbers generator for particle systems.
#[derive(Debug, Clone, Reflect)]
pub struct ParticleSystemRng {
rng_seed: u64,
#[reflect(hidden)]
rng: StdRng,
}
impl Default for ParticleSystemRng {
fn default() -> Self {
Self::new(0xDEADBEEF)
}
}
impl ParticleSystemRng {
/// Creates new PRNG with a given seed. Fixed seed guarantees that particle system's behaviour will be
/// deterministic.
pub fn new(seed: u64) -> Self {
Self {
rng_seed: seed,
rng: StdRng::seed_from_u64(seed),
}
}
/// Resets the state of PRNG.
#[inline]
pub fn reset(&mut self) {
self.rng = StdRng::seed_from_u64(self.rng_seed);
}
}
impl RngCore for ParticleSystemRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.rng.next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.rng.next_u64()
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.rng.fill_bytes(dest)
}
#[inline]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.rng.try_fill_bytes(dest)
}
}
impl Visit for ParticleSystemRng {
fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
let mut guard = visitor.enter_region(name)?;
self.rng_seed.visit("Seed", &mut guard)?;
// Re-initialize the RNG to keep determinism.
if guard.is_reading() {
self.rng = StdRng::seed_from_u64(self.rng_seed);
}
Ok(())
}
}
/// Particle system used to create visual effects that consists of many small parts,
/// this can be smoke, fire, dust, sparks, etc. Particle system optimized to operate
/// on many small parts, so it is much efficient to use particle system instead of
/// separate scene nodes. Downside of particle system is that there almost no way
/// to control separate particles, all particles controlled by parameters of particle
/// emitters.
///
/// # Emitters
///
/// Particle system can contain multiple particle emitters, each emitter has its own
/// set of properties and it defines law of change of particle parameters over time.
///
/// # Performance
///
/// In general particle system can be considered as heavy visual effect, but total impact
/// on performance defined by amount of particles and amount of pixels they take to render.
/// A rule of thumb will be to decrease amount of particles until effect will look good
/// enough, alternatively amount of particles can be defined by some coefficient based on
/// graphics quality settings.
///
/// # Example
///
/// Simple smoke effect can be create like so:
///
/// ```
/// # use fyrox_impl::{
/// # asset::manager::ResourceManager,
/// # core::{
/// # algebra::Vector3,
/// # color::Color,
/// # color_gradient::{ColorGradient, GradientPoint},
/// # sstorage::ImmutableString,
/// # },
/// # material::{Material, PropertyValue, MaterialResource},
/// # resource::texture::Texture,
/// # scene::{
/// # base::BaseBuilder,
/// # graph::Graph,
/// # particle_system::{
/// # emitter::base::BaseEmitterBuilder, emitter::sphere::SphereEmitterBuilder,
/// # ParticleSystemBuilder,
/// # },
/// # transform::TransformBuilder,
/// # },
/// # };
/// # use std::path::Path;
/// #
/// fn create_smoke(graph: &mut Graph, resource_manager: &mut ResourceManager, pos: Vector3<f32>) {
/// let mut material = Material::standard_particle_system();
/// material
/// .set_property(
/// &ImmutableString::new("diffuseTexture"),
/// PropertyValue::Sampler {
/// value: Some(
/// resource_manager
/// .request::<Texture>(Path::new("data/particles/smoke_04.tga")),
/// ),
/// fallback: Default::default(),
/// },
/// )
/// .unwrap();
///
/// ParticleSystemBuilder::new(
/// BaseBuilder::new()
/// .with_lifetime(5.0)
/// .with_local_transform(TransformBuilder::new().with_local_position(pos).build()),
/// )
/// .with_acceleration(Vector3::new(0.0, 0.0, 0.0))
/// .with_color_over_lifetime_gradient({
/// let mut gradient = ColorGradient::new();
/// gradient.add_point(GradientPoint::new(0.00, Color::from_rgba(150, 150, 150, 0)));
/// gradient.add_point(GradientPoint::new(
/// 0.05,
/// Color::from_rgba(150, 150, 150, 220),
/// ));
/// gradient.add_point(GradientPoint::new(
/// 0.85,
/// Color::from_rgba(255, 255, 255, 180),
/// ));
/// gradient.add_point(GradientPoint::new(1.00, Color::from_rgba(255, 255, 255, 0)));
/// gradient
/// })
/// .with_emitters(vec![SphereEmitterBuilder::new(
/// BaseEmitterBuilder::new()
/// .with_max_particles(100)
/// .with_spawn_rate(50)
/// .with_x_velocity_range(-0.01..0.01)
/// .with_y_velocity_range(0.02..0.03)
/// .with_z_velocity_range(-0.01..0.01),
/// )
/// .with_radius(0.01)
/// .build()])
/// .with_material(MaterialResource::new_ok(Default::default(), material))
/// .build(graph);
/// }
/// ```
#[derive(Debug, Clone, Reflect)]
pub struct ParticleSystem {
base: Base,
/// List of emitters of the particle system.
pub emitters: InheritableVariable<Vec<Emitter>>,
#[reflect(setter = "set_material")]
material: InheritableVariable<MaterialResource>,
#[reflect(setter = "set_acceleration")]
acceleration: InheritableVariable<Vector3<f32>>,
#[reflect(setter = "set_color_over_lifetime_gradient")]
color_over_lifetime: InheritableVariable<ColorGradient>,
#[reflect(setter = "play")]
is_playing: InheritableVariable<bool>,
#[reflect(hidden)]
particles: Vec<Particle>,
#[reflect(hidden)]
free_particles: Vec<u32>,
rng: ParticleSystemRng,
}
impl Visit for ParticleSystem {
fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
let mut region = visitor.enter_region(name)?;
self.base.visit("Base", &mut region)?;
self.emitters.visit("Emitters", &mut region)?;
self.acceleration.visit("Acceleration", &mut region)?;
self.color_over_lifetime
.visit("ColorGradient", &mut region)?;
self.is_playing.visit("Enabled", &mut region)?;
self.particles.visit("Particles", &mut region)?;
self.free_particles.visit("FreeParticles", &mut region)?;
let _ = self.rng.visit("Rng", &mut region);
// Backward compatibility.
if region.is_reading() {
if let Some(material) = material::visit_old_texture_as_material(
&mut region,
Material::standard_particle_system,
) {
self.material = material.into();
} else {
self.material.visit("Material", &mut region)?;
}
} else {
self.material.visit("Material", &mut region)?;
}
let mut soft_boundary_sharpness_factor = 100.0;
if soft_boundary_sharpness_factor
.visit("SoftBoundarySharpnessFactor", &mut region)
.is_ok()
{
Log::verify(self.material.data_ref().set_property(
&ImmutableString::new("softBoundarySharpnessFactor"),
PropertyValue::Float(soft_boundary_sharpness_factor),
));
}
Ok(())
}
}
impl Deref for ParticleSystem {
type Target = Base;
fn deref(&self) -> &Self::Target {
&self.base
}
}
impl DerefMut for ParticleSystem {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.base
}
}
impl TypeUuidProvider for ParticleSystem {
fn type_uuid() -> Uuid {
uuid!("8b210eff-97a4-494f-ba7a-a581d3f4a442")
}
}
impl ParticleSystem {
/// Returns current acceleration for particles in particle system.
pub fn acceleration(&self) -> Vector3<f32> {
*self.acceleration
}
/// Set new acceleration that will be applied to all particles,
/// can be used to change "gravity" vector of particles.
pub fn set_acceleration(&mut self, accel: Vector3<f32>) -> Vector3<f32> {
self.acceleration.set_value_and_mark_modified(accel)
}
/// Sets new "color curve" that will evaluate color over lifetime.
pub fn set_color_over_lifetime_gradient(&mut self, gradient: ColorGradient) -> ColorGradient {
self.color_over_lifetime
.set_value_and_mark_modified(gradient)
}
/// Plays or pauses the particle system. Paused particle system remains in "frozen" state
/// until played again again. You can manually reset state of the system by calling [`Self::clear_particles`].
pub fn play(&mut self, is_playing: bool) -> bool {
self.is_playing.set_value_and_mark_modified(is_playing)
}
/// Returns current particle system status.
pub fn is_playing(&self) -> bool {
*self.is_playing
}
/// Replaces the particles in the particle system with pre-generated set. It could be useful
/// to create procedural particle effects; when particles cannot be pre-made.
pub fn set_particles(&mut self, particles: Vec<Particle>) {
self.free_particles.clear();
self.particles = particles;
}
/// Returns a reference to a slice to the current set of particles, generated by the particle system.
pub fn particles(&self) -> &[Particle] {
&self.particles
}
/// Removes all generated particles.
pub fn clear_particles(&mut self) {
self.particles.clear();
self.free_particles.clear();
for emitter in self.emitters.get_value_mut_silent().iter_mut() {
emitter.alive_particles = 0;
emitter.spawned_particles = 0;
}
}
/// Sets the new material for the particle system.
pub fn set_material(&mut self, material: MaterialResource) -> MaterialResource {
self.material.set_value_and_mark_modified(material)
}
/// Returns current material used by particle system.
pub fn texture(&self) -> MaterialResource {
(*self.material).clone()
}
/// Returns current material used by particle system by ref.
pub fn texture_ref(&self) -> &MaterialResource {
&self.material
}
fn tick(&mut self, dt: f32) {
for emitter in self.emitters.get_value_mut_silent().iter_mut() {
emitter.tick(dt);
}
for (i, emitter) in self.emitters.get_value_mut_silent().iter_mut().enumerate() {
for _ in 0..emitter.particles_to_spawn {
let mut particle = Particle {
emitter_index: i as u32,
..Particle::default()
};
emitter.alive_particles += 1;
emitter.emit(&mut particle, &mut self.rng);
if let Some(free_index) = self.free_particles.pop() {
self.particles[free_index as usize] = particle;
} else {
self.particles.push(particle);
}
}
}
let acceleration_offset = self.acceleration.scale(dt * dt);
for (i, particle) in self.particles.iter_mut().enumerate() {
if particle.alive {
particle.lifetime += dt;
if particle.lifetime >= particle.initial_lifetime {
self.free_particles.push(i as u32);
if let Some(emitter) = self
.emitters
.get_value_mut_and_mark_modified()
.get_mut(particle.emitter_index as usize)
{
emitter.alive_particles = emitter.alive_particles.saturating_sub(1);
}
particle.alive = false;
particle.lifetime = particle.initial_lifetime;
} else {
particle.velocity += acceleration_offset;
particle.position += particle.velocity;
particle.size += particle.size_modifier * dt;
if particle.size < 0.0 {
particle.size = 0.0;
}
particle.rotation += particle.rotation_speed * dt;
let k = particle.lifetime / particle.initial_lifetime;
particle.color = self.color_over_lifetime.get_color(k);
}
}
}
}
/// Simulates particle system for the given `time` with given time step (`dt`). `dt` is usually `1.0 / 60.0`.
pub fn rewind(&mut self, dt: f32, time: f32) {
assert!(dt > 0.0);
self.rng.reset();
self.clear_particles();
let mut t = 0.0;
while t < time {
self.tick(dt);
t += dt;
}
}
}
impl Default for ParticleSystem {
fn default() -> Self {
ParticleSystemBuilder::new(BaseBuilder::new()).build_particle_system()
}
}
impl NodeTrait for ParticleSystem {
crate::impl_query_component!();
fn local_bounding_box(&self) -> AxisAlignedBoundingBox {
AxisAlignedBoundingBox::unit()
}
fn world_bounding_box(&self) -> AxisAlignedBoundingBox {
self.local_bounding_box()
.transform(&self.global_transform())
}
fn id(&self) -> Uuid {
Self::type_uuid()
}
fn update(&mut self, context: &mut UpdateContext) {
let dt = context.dt;
if *self.is_playing {
self.tick(dt);
}
}
fn collect_render_data(&self, ctx: &mut RenderContext) -> RdcControlFlow {
if !self.global_visibility()
|| !self.is_globally_enabled()
|| (self.frustum_culling()
&& !ctx
.frustum
.map_or(true, |f| f.is_intersects_aabb(&self.world_bounding_box())))
{
return RdcControlFlow::Continue;
}
if renderer::is_shadow_pass(ctx.render_pass_name) && !self.cast_shadows() {
return RdcControlFlow::Continue;
}
let mut sorted_particles = Vec::new();
for (i, particle) in self.particles.iter().enumerate() {
if particle.alive {
let actual_position = particle.position + self.base.global_position();
particle
.sqr_distance_to_camera
.set((*ctx.observer_position - actual_position).norm_squared());
sorted_particles.push(i as u32);
}
}
let particles = &self.particles;
sorted_particles.sort_by(|a, b| {
let particle_a = particles.get(*a as usize).unwrap();
let particle_b = particles.get(*b as usize).unwrap();
// Reverse ordering because we want to sort back-to-front.
if particle_a.sqr_distance_to_camera < particle_b.sqr_distance_to_camera {
Ordering::Greater
} else if particle_a.sqr_distance_to_camera > particle_b.sqr_distance_to_camera {
Ordering::Less
} else {
Ordering::Equal
}
});
let global_transform = self.global_transform();
let sort_index = ctx.calculate_sorting_index(self.global_position());
ctx.storage.push_triangles(
Vertex::layout(),
&self.material,
RenderPath::Forward,
0,
sort_index,
false,
self.self_handle,
&mut move |mut vertex_buffer, mut triangle_buffer| {
let vertices = sorted_particles.iter().flat_map(move |particle_index| {
let particle = self.particles.get(*particle_index as usize).unwrap();
let position = global_transform
.transform_point(&Point3::from(particle.position))
.coords;
[
Vertex {
position,
tex_coord: Vector2::default(),
size: particle.size,
rotation: particle.rotation,
color: particle.color,
},
Vertex {
position,
tex_coord: Vector2::new(1.0, 0.0),
size: particle.size,
rotation: particle.rotation,
color: particle.color,
},
Vertex {
position,
tex_coord: Vector2::new(1.0, 1.0),
size: particle.size,
rotation: particle.rotation,
color: particle.color,
},
Vertex {
position,
tex_coord: Vector2::new(0.0, 1.0),
size: particle.size,
rotation: particle.rotation,
color: particle.color,
},
]
});
let triangles = (0..sorted_particles.len()).flat_map(|i| {
let base_index = (i * 4) as u32;
[
TriangleDefinition([base_index, base_index + 1, base_index + 2]),
TriangleDefinition([base_index, base_index + 2, base_index + 3]),
]
});
let start_vertex_index = vertex_buffer.vertex_count();
for vertex in vertices {
vertex_buffer
.push_vertex_raw(value_as_u8_slice(&vertex))
.unwrap();
}
triangle_buffer.push_triangles_iter_with_offset(start_vertex_index, triangles)
},
);
RdcControlFlow::Continue
}
}
/// Particle system builder allows you to construct particle system in declarative manner.
/// This is typical implementation of Builder pattern.
pub struct ParticleSystemBuilder {
base_builder: BaseBuilder,
emitters: Vec<Emitter>,
material: MaterialResource,
acceleration: Vector3<f32>,
particles: Vec<Particle>,
color_over_lifetime: ColorGradient,
is_playing: bool,
rng: ParticleSystemRng,
}
impl ParticleSystemBuilder {
/// Creates new builder with default parameters.
pub fn new(base_builder: BaseBuilder) -> Self {
Self {
base_builder,
emitters: Default::default(),
material: MaterialResource::new_ok(
Default::default(),
Material::standard_particle_system(),
),
particles: Default::default(),
acceleration: Vector3::new(0.0, -9.81, 0.0),
color_over_lifetime: Default::default(),
is_playing: true,
rng: ParticleSystemRng::default(),
}
}
/// Sets desired emitters for particle system.
pub fn with_emitters(mut self, emitters: Vec<Emitter>) -> Self {
self.emitters = emitters;
self
}
/// Sets desired material for particle system.
pub fn with_material(mut self, material: MaterialResource) -> Self {
self.material = material;
self
}
/// Sets desired acceleration for particle system.
pub fn with_acceleration(mut self, acceleration: Vector3<f32>) -> Self {
self.acceleration = acceleration;
self
}
/// Sets color gradient over lifetime for particle system.
pub fn with_color_over_lifetime_gradient(mut self, color_over_lifetime: ColorGradient) -> Self {
self.color_over_lifetime = color_over_lifetime;
self
}
/// Sets an initial set of particles that not belongs to any emitter. This method
/// could be useful if you need a custom position/velocity/etc. of each particle.
pub fn with_particles(mut self, particles: Vec<Particle>) -> Self {
self.particles = particles;
self
}
/// Sets initial particle system state.
pub fn with_playing(mut self, enabled: bool) -> Self {
self.is_playing = enabled;
self
}
/// Sets desired pseudo-random numbers generator.
pub fn with_rng(mut self, rng: ParticleSystemRng) -> Self {
self.rng = rng;
self
}
fn build_particle_system(self) -> ParticleSystem {
ParticleSystem {
base: self.base_builder.build_base(),
particles: self.particles,
free_particles: Vec::new(),
emitters: self.emitters.into(),
material: self.material.into(),
acceleration: self.acceleration.into(),
color_over_lifetime: self.color_over_lifetime.into(),
is_playing: self.is_playing.into(),
rng: self.rng,
}
}
/// Creates new instance of particle system.
pub fn build_node(self) -> Node {
Node::new(self.build_particle_system())
}
/// Creates new instance of particle system and adds it to the graph.
pub fn build(self, graph: &mut Graph) -> Handle<Node> {
graph.add_node(self.build_node())
}
}