fyrox_impl/resource/texture/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
//! Texture is an image that used to fill faces to add details to them.
//!
//! In most cases textures are just 2D images, however there are some exclusions to that -
//! for example cube maps, that may be used for environment mapping. Fyrox supports 1D, 2D,
//! 3D and Cube textures.
//!
//! ## Supported formats
//!
//! To load images and decode them, Fyrox uses image and ddsfile crates. Here is the list of
//! supported formats: png, tga, bmp, dds, jpg, gif, tiff, dds.
//!
//! ## Compressed textures
//!
//! Fyrox supports most commonly used formats of compressed textures: DXT1, DXT3, DXT5.
//!
//! ## Render target
//!
//! Texture can be used as render target to render scene in it. To do this you should use
//! new_render_target method and pass its result to scene's render target property. Renderer
//! will automatically provide you info about metrics of texture, but it won't give you
//! access to pixels of render target.
use crate::{
asset::{options::ImportOptions, Resource, ResourceData, TEXTURE_RESOURCE_UUID},
core::{
algebra::{Vector2, Vector3},
futures::io::Error,
io::FileLoadError,
reflect::prelude::*,
uuid::Uuid,
visitor::{PodVecView, Visit, VisitError, VisitResult, Visitor},
TypeUuidProvider,
},
};
use ddsfile::{Caps2, D3DFormat};
use fast_image_resize as fr;
use fxhash::FxHasher;
use fyrox_core::num_traits::Bounded;
use fyrox_core::sparse::AtomicIndex;
use fyrox_core::uuid_provider;
use fyrox_resource::io::ResourceIo;
use fyrox_resource::untyped::ResourceKind;
use image::{ColorType, DynamicImage, ImageError, ImageFormat, Pixel};
use lazy_static::lazy_static;
use serde::{Deserialize, Serialize};
use std::sync::Arc;
use std::{
any::Any,
fmt::{Debug, Display, Formatter},
hash::{Hash, Hasher},
io::Cursor,
num::NonZeroU32,
ops::{Deref, DerefMut, Shr},
path::Path,
};
use strum_macros::{AsRefStr, EnumString, VariantNames};
pub mod loader;
/// Texture kind.
#[derive(Copy, Clone, Debug, Reflect)]
pub enum TextureKind {
/// 1D texture.
Line {
/// Length of the texture.
length: u32,
},
/// 2D texture.
Rectangle {
/// Width of the texture.
width: u32,
/// Height of the texture.
height: u32,
},
/// Cube texture.
Cube {
/// Width of the cube face.
width: u32,
/// Height of the cube face.
height: u32,
},
/// Volume texture (3D).
Volume {
/// Width of the volume.
width: u32,
/// Height of the volume.
height: u32,
/// Depth of the volume.
depth: u32,
},
}
impl TextureKind {
/// Tries to fetch [`TextureKind::Line`]'s length.
#[inline]
pub fn line_length(&self) -> Option<u32> {
if let Self::Line { length } = self {
Some(*length)
} else {
None
}
}
/// Tries to fetch [`TextureKind::Rectangle`]'s width (x) and height (y).
#[inline]
pub fn rectangle_size(&self) -> Option<Vector2<u32>> {
if let Self::Rectangle { width, height } = self {
Some(Vector2::new(*width, *height))
} else {
None
}
}
/// Tries to fetch [`TextureKind::Cube`]'s width (x) and height (y).
#[inline]
pub fn cube_size(&self) -> Option<Vector2<u32>> {
if let Self::Cube { width, height } = self {
Some(Vector2::new(*width, *height))
} else {
None
}
}
/// Tries to fetch [`TextureKind::Volume`]'s width (x), height (y), depth (z).
#[inline]
pub fn volume_size(&self) -> Option<Vector3<u32>> {
if let Self::Volume {
width,
height,
depth,
} = self
{
Some(Vector3::new(*width, *height, *depth))
} else {
None
}
}
}
impl Default for TextureKind {
fn default() -> Self {
Self::Rectangle {
width: 0,
height: 0,
}
}
}
impl Visit for TextureKind {
fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
let mut region = visitor.enter_region(name)?;
let mut id = match self {
TextureKind::Line { .. } => 0,
TextureKind::Rectangle { .. } => 1,
TextureKind::Cube { .. } => 2,
TextureKind::Volume { .. } => 3,
};
id.visit("Id", &mut region)?;
if region.is_reading() {
*self = match id {
0 => TextureKind::Line { length: 0 },
1 => TextureKind::Rectangle {
width: 0,
height: 0,
},
2 => TextureKind::Cube {
width: 0,
height: 0,
},
3 => TextureKind::Volume {
width: 0,
height: 0,
depth: 0,
},
_ => {
return VisitResult::Err(VisitError::User(format!(
"Invalid texture kind {}!",
id
)))
}
};
}
match self {
TextureKind::Line { length } => {
length.visit("Length", &mut region)?;
}
TextureKind::Rectangle { width, height } => {
width.visit("Width", &mut region)?;
height.visit("Height", &mut region)?;
}
TextureKind::Cube { width, height } => {
width.visit("Width", &mut region)?;
height.visit("Height", &mut region)?;
}
TextureKind::Volume {
width,
height,
depth,
} => {
width.visit("Width", &mut region)?;
height.visit("Height", &mut region)?;
depth.visit("Depth", &mut region)?;
}
}
Ok(())
}
}
/// Data storage of a texture.
#[derive(Default, Clone, Reflect)]
pub struct TextureBytes(Vec<u8>);
impl Visit for TextureBytes {
fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
self.0.visit(name, visitor)
}
}
impl Debug for TextureBytes {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "Texture has {} bytes", self.0.len())
}
}
impl From<Vec<u8>> for TextureBytes {
fn from(bytes: Vec<u8>) -> Self {
Self(bytes)
}
}
impl Deref for TextureBytes {
type Target = Vec<u8>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for TextureBytes {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
/// Actual texture data.
#[derive(Debug, Clone, Reflect)]
pub struct Texture {
kind: TextureKind,
bytes: TextureBytes,
pixel_kind: TexturePixelKind,
minification_filter: TextureMinificationFilter,
magnification_filter: TextureMagnificationFilter,
s_wrap_mode: TextureWrapMode,
t_wrap_mode: TextureWrapMode,
mip_count: u32,
anisotropy: f32,
data_hash: u64,
is_render_target: bool,
#[doc(hidden)]
#[reflect(hidden)]
pub cache_index: Arc<AtomicIndex>,
}
impl TypeUuidProvider for Texture {
fn type_uuid() -> Uuid {
TEXTURE_RESOURCE_UUID
}
}
impl ResourceData for Texture {
fn as_any(&self) -> &dyn Any {
self
}
fn as_any_mut(&mut self) -> &mut dyn Any {
self
}
fn type_uuid(&self) -> Uuid {
<Self as TypeUuidProvider>::type_uuid()
}
fn save(&mut self, path: &Path) -> Result<(), Box<dyn std::error::Error>> {
let color_type = match self.pixel_kind {
TexturePixelKind::R8 => ColorType::L8,
TexturePixelKind::Luminance8 => ColorType::L8,
TexturePixelKind::RGB8 => ColorType::Rgb8,
TexturePixelKind::RGBA8 => ColorType::Rgba8,
TexturePixelKind::RG8 => ColorType::La8,
TexturePixelKind::LuminanceAlpha8 => ColorType::La8,
TexturePixelKind::R16 => ColorType::L16,
TexturePixelKind::Luminance16 => ColorType::L16,
TexturePixelKind::RG16 => ColorType::La16,
TexturePixelKind::LuminanceAlpha16 => ColorType::La16,
TexturePixelKind::RGB16 => ColorType::Rgb16,
TexturePixelKind::RGBA16 => ColorType::Rgba16,
TexturePixelKind::RGB32F => ColorType::Rgb32F,
TexturePixelKind::RGBA32F => ColorType::Rgba32F,
TexturePixelKind::DXT1RGB
| TexturePixelKind::DXT1RGBA
| TexturePixelKind::DXT3RGBA
| TexturePixelKind::DXT5RGBA
| TexturePixelKind::R8RGTC
| TexturePixelKind::RG8RGTC
| TexturePixelKind::BGR8
| TexturePixelKind::BGRA8
| TexturePixelKind::RGB16F
| TexturePixelKind::R32F
| TexturePixelKind::R16F => return Err(Box::new(TextureError::UnsupportedFormat)),
};
if let TextureKind::Rectangle { width, height } = self.kind {
Ok(image::save_buffer(
path,
self.bytes.as_ref(),
width,
height,
color_type,
)?)
} else {
Err(Box::new(TextureError::UnsupportedFormat))
}
}
fn can_be_saved(&self) -> bool {
true
}
}
impl Visit for Texture {
fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
let mut region = visitor.enter_region(name)?;
let mut kind = self.pixel_kind.id();
kind.visit("KindId", &mut region)?;
if region.is_reading() {
self.pixel_kind = TexturePixelKind::new(kind)?;
}
self.minification_filter
.visit("MinificationFilter", &mut region)?;
self.magnification_filter
.visit("MagnificationFilter", &mut region)?;
self.anisotropy.visit("Anisotropy", &mut region)?;
self.s_wrap_mode.visit("SWrapMode", &mut region)?;
self.t_wrap_mode.visit("TWrapMode", &mut region)?;
self.mip_count.visit("MipCount", &mut region)?;
self.kind.visit("Kind", &mut region)?;
let mut bytes_view = PodVecView::from_pod_vec(&mut self.bytes);
let _ = bytes_view.visit("Data", &mut region);
Ok(())
}
}
impl Default for Texture {
/// It is very important to mention that defaults may be different for texture when you
/// importing them through resource manager, see
/// [TextureImportOptions](../engine/resource_manager/struct.TextureImportOptions.html) for more info.
fn default() -> Self {
Self {
kind: TextureKind::Rectangle {
width: 0,
height: 0,
},
bytes: Default::default(),
pixel_kind: TexturePixelKind::RGBA8,
minification_filter: TextureMinificationFilter::LinearMipMapLinear,
magnification_filter: TextureMagnificationFilter::Linear,
s_wrap_mode: TextureWrapMode::Repeat,
t_wrap_mode: TextureWrapMode::Repeat,
mip_count: 1,
anisotropy: 16.0,
data_hash: 0,
is_render_target: false,
cache_index: Default::default(),
}
}
}
/// A filter for mip-map generation.
#[derive(
Default, Copy, Clone, Deserialize, Serialize, Debug, Reflect, AsRefStr, EnumString, VariantNames,
)]
pub enum MipFilter {
/// Simple nearest filter, it is the fastest filter available, but it produces noisy mip levels and
/// in most cases it is not advised to use it. Consider its performance as 1x.
Nearest,
/// Bilinear filtration. It has good balance between image quality and speed. It is ~13x times slower
/// than [`Self::Nearest`]. It is default filtering method.
#[default]
Bilinear,
/// Hamming filtration. It has much nicer filtration quality than Bilinear, but the same performance.
Hamming,
/// Catmull-Rom spline filtration. It has very good filtration quality, but it is ~23x times slower
/// than [`Self::Nearest`].
CatmullRom,
/// Gaussian filtration. It has perfect filtration quality, but it is ~37x times slower than
/// [`Self::Nearest`].
Lanczos,
}
uuid_provider!(MipFilter = "8fa17c0e-6889-4540-b396-97db4dc952aa");
impl MipFilter {
fn into_filter_type(self) -> fr::FilterType {
match self {
MipFilter::Nearest => fr::FilterType::Box,
MipFilter::Bilinear => fr::FilterType::Bilinear,
MipFilter::CatmullRom => fr::FilterType::CatmullRom,
MipFilter::Hamming => fr::FilterType::Hamming,
MipFilter::Lanczos => fr::FilterType::Lanczos3,
}
}
}
/// Allows you to define a set of parameters for a texture resource.
///
/// # Details
///
/// Usually the content of this structure is stored in a separate file with .options extension. Typical content of
/// a settings file should look like this:
///
/// ```text
/// (
/// minification_filter: Linear,
/// magnification_filter: Linear,
/// s_wrap_mode: Repeat,
/// t_wrap_mode: ClampToEdge,
/// anisotropy: 8.0,
/// compression: NoCompression,
/// )
/// ```
#[derive(Clone, Deserialize, Serialize, Debug, Reflect)]
pub struct TextureImportOptions {
#[serde(default)]
pub(crate) minification_filter: TextureMinificationFilter,
#[serde(default)]
pub(crate) magnification_filter: TextureMagnificationFilter,
#[serde(default)]
pub(crate) s_wrap_mode: TextureWrapMode,
#[serde(default)]
pub(crate) t_wrap_mode: TextureWrapMode,
#[serde(default)]
pub(crate) anisotropy: f32,
#[serde(default)]
pub(crate) compression: CompressionOptions,
#[serde(default)]
pub(crate) mip_filter: MipFilter,
#[serde(default)]
pub(crate) flip_green_channel: bool,
}
impl Default for TextureImportOptions {
fn default() -> Self {
Self {
minification_filter: TextureMinificationFilter::LinearMipMapLinear,
magnification_filter: TextureMagnificationFilter::Linear,
s_wrap_mode: TextureWrapMode::Repeat,
t_wrap_mode: TextureWrapMode::Repeat,
anisotropy: 16.0,
compression: CompressionOptions::default(),
mip_filter: Default::default(),
flip_green_channel: false,
}
}
}
impl ImportOptions for TextureImportOptions {}
impl TextureImportOptions {
/// Sets new minification filter which will be applied to every imported texture as
/// default value.
pub fn with_minification_filter(
mut self,
minification_filter: TextureMinificationFilter,
) -> Self {
self.minification_filter = minification_filter;
self
}
/// Sets new minification filter which will be applied to every imported texture as
/// default value.
pub fn set_minification_filter(&mut self, minification_filter: TextureMinificationFilter) {
self.minification_filter = minification_filter;
}
/// Sets new magnification filter which will be applied to every imported texture as
/// default value.
pub fn with_magnification_filter(
mut self,
magnification_filter: TextureMagnificationFilter,
) -> Self {
self.magnification_filter = magnification_filter;
self
}
/// Sets new magnification filter which will be applied to every imported texture as
/// default value.
pub fn set_magnification_filter(&mut self, magnification_filter: TextureMagnificationFilter) {
self.magnification_filter = magnification_filter;
}
/// Sets new S coordinate wrap mode which will be applied to every imported texture as
/// default value.
pub fn with_s_wrap_mode(mut self, s_wrap_mode: TextureWrapMode) -> Self {
self.s_wrap_mode = s_wrap_mode;
self
}
/// Sets new S coordinate wrap mode which will be applied to every imported texture as
/// default value.
pub fn set_s_wrap_mode(&mut self, s_wrap_mode: TextureWrapMode) {
self.s_wrap_mode = s_wrap_mode;
}
/// Sets new T coordinate wrap mode which will be applied to every imported texture as
/// default value.
pub fn with_t_wrap_mode(mut self, t_wrap_mode: TextureWrapMode) -> Self {
self.t_wrap_mode = t_wrap_mode;
self
}
/// Sets new T coordinate wrap mode which will be applied to every imported texture as
/// default value.
pub fn set_t_wrap_mode(&mut self, t_wrap_mode: TextureWrapMode) {
self.t_wrap_mode = t_wrap_mode;
}
/// Sets new anisotropy level which will be applied to every imported texture as
/// default value.
pub fn with_anisotropy(mut self, anisotropy: f32) -> Self {
self.anisotropy = anisotropy.min(1.0);
self
}
/// Sets new anisotropy level which will be applied to every imported texture as
/// default value.
pub fn set_anisotropy(&mut self, anisotropy: f32) {
self.anisotropy = anisotropy.min(1.0);
}
/// Sets desired texture compression.
pub fn with_compression(mut self, compression: CompressionOptions) -> Self {
self.compression = compression;
self
}
/// Sets desired texture compression.
pub fn set_compression(&mut self, compression: CompressionOptions) {
self.compression = compression;
}
}
lazy_static! {
/// Placeholder texture.
pub static ref PLACEHOLDER: TextureResource = TextureResource::load_from_memory(
ResourceKind::External("__PlaceholderTexture".into()),
include_bytes!("default.png"),
Default::default()
)
.unwrap();
}
/// Type alias for texture resources.
pub type TextureResource = Resource<Texture>;
/// Extension trait for texture resources.
pub trait TextureResourceExtension: Sized {
/// Creates new render target for a scene. This method automatically configures GPU texture
/// to correct settings, after render target was created, it must not be modified, otherwise
/// result is undefined.
fn new_render_target(width: u32, height: u32) -> Self;
/// Tries to load a texture from given data. Use this method if you want to
/// load a texture from embedded data.
///
/// # On-demand compression
///
/// The data can be compressed if needed to improve performance on GPU side.
///
/// # Important notes
///
/// Textures loaded with this method won't be correctly serialized! It means
/// that if you'll made a scene with textures loaded with this method, and then
/// save a scene, then the engine won't be able to restore the textures if you'll
/// try to load the saved scene. This is essential limitation of this method,
/// because the engine does not know where to get the data of the texture at
/// loading. You should use `ResourceManager::request_texture` in majority of cases!
///
/// Main use cases for this method are: procedural textures, icons for GUI.
fn load_from_memory(
kind: ResourceKind,
data: &[u8],
import_options: TextureImportOptions,
) -> Result<Self, TextureError>;
/// Tries to create new texture from given parameters, it may fail only if size of data passed
/// in does not match with required.
fn from_bytes(
kind: TextureKind,
pixel_kind: TexturePixelKind,
bytes: Vec<u8>,
resource_kind: ResourceKind,
) -> Option<Self>;
/// Creates a deep clone of the texture. Unlike [`TextureResource::clone`], this method clones the actual texture data,
/// which could be slow.
fn deep_clone(&self) -> Self;
}
impl TextureResourceExtension for TextureResource {
fn new_render_target(width: u32, height: u32) -> Self {
Resource::new_ok(
Default::default(),
Texture {
// Render target will automatically set width and height before rendering.
kind: TextureKind::Rectangle { width, height },
bytes: Default::default(),
pixel_kind: TexturePixelKind::RGBA8,
minification_filter: TextureMinificationFilter::Linear,
magnification_filter: TextureMagnificationFilter::Linear,
s_wrap_mode: TextureWrapMode::Repeat,
t_wrap_mode: TextureWrapMode::Repeat,
mip_count: 1,
anisotropy: 1.0,
data_hash: 0,
is_render_target: true,
cache_index: Default::default(),
},
)
}
fn load_from_memory(
kind: ResourceKind,
data: &[u8],
import_options: TextureImportOptions,
) -> Result<Self, TextureError> {
Ok(Resource::new_ok(
kind,
Texture::load_from_memory(data, import_options)?,
))
}
fn from_bytes(
kind: TextureKind,
pixel_kind: TexturePixelKind,
bytes: Vec<u8>,
resource_kind: ResourceKind,
) -> Option<Self> {
Some(Resource::new_ok(
resource_kind,
Texture::from_bytes(kind, pixel_kind, bytes)?,
))
}
fn deep_clone(&self) -> Self {
let kind = self.header().kind.clone();
let data = self.data_ref().clone();
Resource::new_ok(kind, data)
}
}
/// The texture magnification function is used when the pixel being textured maps to an area
/// less than or equal to one texture element.
#[derive(
Copy,
Clone,
Debug,
Hash,
PartialOrd,
PartialEq,
Deserialize,
Serialize,
Reflect,
VariantNames,
EnumString,
AsRefStr,
Visit,
Eq,
)]
#[repr(u32)]
pub enum TextureMagnificationFilter {
/// Returns the value of the texture element that is nearest to the center of the pixel
/// being textured.
Nearest = 0,
/// Returns the weighted average of the four texture elements that are closest to the
/// center of the pixel being textured.
Linear = 1,
}
uuid_provider!(TextureMagnificationFilter = "824f5b6c-8957-42db-9ebc-ef2a5dece5ab");
impl Default for TextureMagnificationFilter {
fn default() -> Self {
Self::Linear
}
}
/// The texture minifying function is used whenever the pixel being textured maps to an area
/// greater than one texture element.
#[derive(
Copy,
Clone,
Debug,
Hash,
PartialOrd,
PartialEq,
Deserialize,
Serialize,
Reflect,
VariantNames,
EnumString,
AsRefStr,
Visit,
Eq,
)]
#[repr(u32)]
pub enum TextureMinificationFilter {
/// Returns the value of the texture element that is nearest to the center of the pixel
/// being textured.
Nearest = 0,
/// Chooses the mipmap that most closely matches the size of the pixel being textured and
/// uses the Nearest criterion (the texture element nearest to the center of the pixel)
/// to produce a texture value.
NearestMipMapNearest = 1,
/// Chooses the two mipmaps that most closely match the size of the pixel being textured
/// and uses the Nearest criterion (the texture element nearest to the center of the pixel)
/// to produce a texture value from each mipmap. The final texture value is a weighted average
/// of those two values.
NearestMipMapLinear = 2,
/// Returns the weighted average of the four texture elements that are closest to the
/// center of the pixel being textured.
Linear = 3,
/// Chooses the mipmap that most closely matches the size of the pixel being textured and
/// uses the Linear criterion (a weighted average of the four texture elements that are
/// closest to the center of the pixel) to produce a texture value.
LinearMipMapNearest = 4,
/// Chooses the two mipmaps that most closely match the size of the pixel being textured
/// and uses the Linear criterion (a weighted average of the four texture elements that
/// are closest to the center of the pixel) to produce a texture value from each mipmap.
/// The final texture value is a weighted average of those two values.
LinearMipMapLinear = 5,
}
uuid_provider!(TextureMinificationFilter = "0ec9e072-6d0a-47b2-a9c2-498cac4de22b");
impl TextureMinificationFilter {
/// Returns true if minification filter is using mip mapping, false - otherwise.
pub fn is_using_mip_mapping(self) -> bool {
match self {
TextureMinificationFilter::Nearest | TextureMinificationFilter::Linear => false,
TextureMinificationFilter::NearestMipMapNearest
| TextureMinificationFilter::LinearMipMapLinear
| TextureMinificationFilter::NearestMipMapLinear
| TextureMinificationFilter::LinearMipMapNearest => true,
}
}
}
impl Default for TextureMinificationFilter {
fn default() -> Self {
Self::LinearMipMapLinear
}
}
/// Defines a law of texture coordinate modification.
#[derive(
Copy,
Clone,
Debug,
Hash,
PartialOrd,
PartialEq,
Deserialize,
Serialize,
Reflect,
VariantNames,
EnumString,
AsRefStr,
Visit,
Eq,
)]
#[repr(u32)]
pub enum TextureWrapMode {
/// Causes the integer part of a coordinate to be ignored; GPU uses only the fractional part,
/// thereby creating a repeating pattern.
Repeat = 0,
/// Causes a coordinates to be clamped to the range range, where N is the size of the texture
/// in the direction of clamping
ClampToEdge = 1,
/// Evaluates a coordinates in a similar manner to ClampToEdge. However, in cases where clamping
/// would have occurred in ClampToEdge mode, the fetched texel data is substituted with the values
/// specified by border color.
ClampToBorder = 2,
/// Causes the a coordinate to be set to the fractional part of the texture coordinate if the integer
/// part of coordinate is even; if the integer part of coordinate is odd, then the coordinate texture
/// coordinate is set to 1-frac, where frac represents the fractional part of coordinate.
MirroredRepeat = 3,
/// Causes a coordinate to be repeated as for MirroredRepeat for one repetition of the texture, at
/// which point the coordinate to be clamped as in ClampToEdge.
MirrorClampToEdge = 4,
}
uuid_provider!(TextureWrapMode = "e360d139-4374-4323-a66d-d192809d9d87");
impl Default for TextureWrapMode {
fn default() -> Self {
Self::Repeat
}
}
/// Texture kind defines pixel format of texture.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Reflect)]
#[repr(u32)]
pub enum TexturePixelKind {
/// 1 byte red.
R8 = 0,
/// Red, green, and blue components, each by 1 byte.
RGB8 = 1,
/// Red, green, blue, and alpha components, each by 1 byte.
RGBA8 = 2,
/// Red and green, each by 1 byte.
RG8 = 3,
/// 2 byte red.
R16 = 4,
/// Red and green, each by 2 byte.
RG16 = 5,
/// Blue, green, and red components, each by 1 byte.
BGR8 = 6,
/// Blue, green, red and alpha components, each by 1 byte.
BGRA8 = 7,
/// Red, green, and blue components, each by 2 byte.
RGB16 = 8,
/// Red, green, blue, and alpha components, each by 2 byte.
RGBA16 = 9,
/// Compressed S3TC DXT1 RGB (no alpha).
DXT1RGB = 10,
/// Compressed S3TC DXT1 RGBA.
DXT1RGBA = 11,
/// Compressed S3TC DXT3 RGBA.
DXT3RGBA = 12,
/// Compressed S3TC DXT5 RGBA.
DXT5RGBA = 13,
/// Compressed R8 texture (RGTC).
R8RGTC = 14,
/// Compressed RG8 texture (RGTC).
RG8RGTC = 15,
/// Floating-point RGB texture with 32bit depth.
RGB32F = 16,
/// Floating-point RGBA texture with 32bit depth.
RGBA32F = 17,
/// 1 byte luminance texture where pixels will have (L, L, L, 1.0) value on fetching.
///
/// # Platform-specific
///
/// - WebAssembly - not supported, the image will act like [`Self::R8`] format, which
/// will have (R, 0.0, 0.0, 1.0) pixels.
Luminance8 = 18,
/// 1 byte for luminance and 1 for alpha, where all pixels will have (L, L, L, A) value on fetching.
///
/// # Platform-specific
///
/// - WebAssembly - not supported, the image will act like [`Self::RG8`] format, which
/// will have (R, G, R, G) pixels.
LuminanceAlpha8 = 19,
/// 2 byte luminance texture where pixels will have (L, L, L, 1.0) value on fetching.
///
/// # Platform-specific
///
/// - WebAssembly - not supported, the image will act like [`Self::R8`] format, which
/// will have (R, 0.0, 0.0, 1.0) pixels.
Luminance16 = 20,
/// 2 byte for luminance and 2 for alpha, where all pixels will have (L, L, L, A) value on fetching.
///
/// # Platform-specific
///
/// - WebAssembly - not supported, the image will act like [`Self::RG16`] format, which
/// will have (R, G, R, G) pixels.
LuminanceAlpha16 = 21,
/// Red, green, blue components, each by 2 byte half-precision float.
RGB16F = 22,
/// Red component as 4-byte, medium-precision float.
R32F = 23,
/// Red component as 2-byte, half-precision float.
R16F = 24,
}
impl TexturePixelKind {
fn new(id: u32) -> Result<Self, String> {
match id {
0 => Ok(Self::R8),
1 => Ok(Self::RGB8),
2 => Ok(Self::RGBA8),
3 => Ok(Self::RG8),
4 => Ok(Self::R16),
5 => Ok(Self::RG16),
6 => Ok(Self::BGR8),
7 => Ok(Self::BGRA8),
8 => Ok(Self::RGB16),
9 => Ok(Self::RGBA16),
10 => Ok(Self::DXT1RGB),
11 => Ok(Self::DXT1RGBA),
12 => Ok(Self::DXT3RGBA),
13 => Ok(Self::DXT5RGBA),
14 => Ok(Self::R8RGTC),
15 => Ok(Self::RG8RGTC),
16 => Ok(Self::RGB32F),
17 => Ok(Self::RGBA32F),
18 => Ok(Self::Luminance8),
19 => Ok(Self::LuminanceAlpha8),
20 => Ok(Self::Luminance16),
21 => Ok(Self::LuminanceAlpha16),
22 => Ok(Self::RGB16F),
23 => Ok(Self::R32F),
24 => Ok(Self::R16F),
_ => Err(format!("Invalid texture kind {}!", id)),
}
}
fn id(self) -> u32 {
self as u32
}
/// Tries to get size of the pixel in bytes. Pixels of compressed textures consumes less than a byte, so
/// there's no way to express their size on whole number of bytes, in this case `None` is returned.
pub fn size_in_bytes(&self) -> Option<usize> {
match self {
Self::R8 | Self::Luminance8 => Some(1),
Self::RGB8 | Self::BGR8 => Some(3),
Self::RGBA8 | Self::RG16 | Self::BGRA8 | Self::LuminanceAlpha16 | Self::R32F => Some(4),
Self::RG8 | Self::R16 | Self::LuminanceAlpha8 | Self::Luminance16 | Self::R16F => {
Some(2)
}
Self::RGB16 | Self::RGB16F => Some(6),
Self::RGBA16 => Some(8),
Self::RGB32F => Some(12),
Self::RGBA32F => Some(16),
// Pixels of compressed textures consumes less than a byte, so there's no way to express
// their size on whole number of bytes.
Self::DXT1RGB
| Self::DXT1RGBA
| Self::DXT3RGBA
| Self::DXT5RGBA
| Self::R8RGTC
| Self::RG8RGTC => None,
}
}
}
/// An error that may occur during texture operations.
#[derive(Debug)]
pub enum TextureError {
/// Format (pixel format, dimensions) is not supported.
UnsupportedFormat,
/// An io error.
Io(std::io::Error),
/// Internal image crate error.
Image(image::ImageError),
/// An error occurred during file loading.
FileLoadError(FileLoadError),
}
impl Display for TextureError {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
TextureError::UnsupportedFormat => {
write!(f, "Unsupported format!")
}
TextureError::Io(v) => {
write!(f, "An i/o error has occurred: {v}")
}
TextureError::Image(v) => {
write!(f, "Image loading error {v}")
}
TextureError::FileLoadError(v) => {
write!(f, "A file load error has occurred {v:?}")
}
}
}
}
impl std::error::Error for TextureError {}
impl From<FileLoadError> for TextureError {
fn from(v: FileLoadError) -> Self {
Self::FileLoadError(v)
}
}
impl From<image::ImageError> for TextureError {
fn from(v: ImageError) -> Self {
Self::Image(v)
}
}
impl From<std::io::Error> for TextureError {
fn from(v: Error) -> Self {
Self::Io(v)
}
}
fn ceil_div_4(x: u32) -> u32 {
(x + 3) / 4
}
/// Texture compression options.
///
/// # Notes
///
/// Try to avoid using compression for normal maps, normals maps usually has smooth
/// gradients, but compression algorithms used by Fyrox cannot preserve good quality
/// of such gradients.
#[derive(
Copy,
Clone,
Deserialize,
Serialize,
PartialEq,
Eq,
Debug,
Reflect,
VariantNames,
EnumString,
AsRefStr,
)]
#[repr(u32)]
pub enum CompressionOptions {
/// An image will be stored without compression if it is not already compressed.
NoCompression = 0,
/// An image will be encoded via DXT1 (BC1) compression with low quality if is not
/// already compressed.
/// Compression ratio is 1:8 (without alpha) or 1:6 (with 1-bit alpha).
/// This option provides maximum speed by having lowest requirements of memory
/// bandwidth.
Speed = 1,
/// An image will be encoded via DXT5 (BC5) compression with high quality if it is
/// not already compressed.
/// Compression ratio is 1:4 (including alpha)
/// This option is faster than `NoCompression` speed by lower requirements of memory
/// bandwidth.
Quality = 2,
}
uuid_provider!(CompressionOptions = "fbdcc081-d0b8-4b62-9925-2de6c013fbf5");
impl Default for CompressionOptions {
fn default() -> Self {
Self::NoCompression
}
}
fn transmute_slice<T>(bytes: &[u8]) -> &'_ [T] {
// SAFETY: This is absolutely safe because `image` crate's Rgb8/Rgba8/etc. and `tbc`s Rgb8/Rgba8/etc.
// have exactly the same memory layout.
unsafe {
std::slice::from_raw_parts(
bytes.as_ptr() as *const T,
bytes.len() / std::mem::size_of::<T>(),
)
}
}
fn transmute_slice_mut<T>(bytes: &mut [u8]) -> &'_ mut [T] {
// SAFETY: This is absolutely safe because `image` crate's Rgb8/Rgba8/etc. and `tbc`s Rgb8/Rgba8/etc.
// have exactly the same memory layout.
unsafe {
std::slice::from_raw_parts_mut(
bytes.as_ptr() as *mut T,
bytes.len() / std::mem::size_of::<T>(),
)
}
}
fn compress_bc1<T: tbc::color::ColorRgba8>(bytes: &[u8], width: usize, height: usize) -> Vec<u8> {
tbc::encode_image_bc1_conv_u8::<T>(transmute_slice::<T>(bytes), width, height)
}
fn compress_bc3<T: tbc::color::ColorRgba8>(bytes: &[u8], width: usize, height: usize) -> Vec<u8> {
tbc::encode_image_bc3_conv_u8::<T>(transmute_slice::<T>(bytes), width, height)
}
fn compress_r8_bc4<T: tbc::color::ColorRed8>(bytes: &[u8], width: usize, height: usize) -> Vec<u8> {
tbc::encode_image_bc4_r8_conv_u8::<T>(transmute_slice::<T>(bytes), width, height)
}
fn compress_rg8_bc4<T: tbc::color::ColorRedGreen8>(
bytes: &[u8],
width: usize,
height: usize,
) -> Vec<u8> {
tbc::encode_image_bc4_rg8_conv_u8::<T>(transmute_slice::<T>(bytes), width, height)
}
fn data_hash(data: &[u8]) -> u64 {
let mut hasher = FxHasher::default();
data.hash(&mut hasher);
hasher.finish()
}
fn try_compress(
pixel_kind: TexturePixelKind,
bytes: &[u8],
w: usize,
h: usize,
compression: CompressionOptions,
) -> Option<(Vec<u8>, TexturePixelKind)> {
match (pixel_kind, compression) {
(TexturePixelKind::RGB8, CompressionOptions::Speed) => Some((
compress_bc1::<tbc::color::Rgb8>(bytes, w, h),
TexturePixelKind::DXT1RGB,
)),
(TexturePixelKind::RGB8, CompressionOptions::Quality) => Some((
compress_bc3::<tbc::color::Rgb8>(bytes, w, h),
TexturePixelKind::DXT5RGBA,
)),
(TexturePixelKind::RGBA8, CompressionOptions::Speed) => Some((
compress_bc1::<tbc::color::Rgba8>(bytes, w, h),
TexturePixelKind::DXT1RGBA,
)),
(TexturePixelKind::RGBA8, CompressionOptions::Quality) => Some((
compress_bc3::<tbc::color::Rgba8>(bytes, w, h),
TexturePixelKind::DXT5RGBA,
)),
(TexturePixelKind::R8, CompressionOptions::Speed)
| (TexturePixelKind::R8, CompressionOptions::Quality)
| (TexturePixelKind::Luminance8, CompressionOptions::Speed)
| (TexturePixelKind::Luminance8, CompressionOptions::Quality) => Some((
compress_r8_bc4::<tbc::color::Red8>(bytes, w, h),
TexturePixelKind::R8RGTC,
)),
(TexturePixelKind::RG8, CompressionOptions::Speed)
| (TexturePixelKind::RG8, CompressionOptions::Quality)
| (TexturePixelKind::LuminanceAlpha8, CompressionOptions::Speed)
| (TexturePixelKind::LuminanceAlpha8, CompressionOptions::Quality) => Some((
compress_rg8_bc4::<tbc::color::RedGreen8>(bytes, w, h),
TexturePixelKind::RG8RGTC,
)),
_ => None,
}
}
fn bytes_in_mip_level(kind: TextureKind, pixel_kind: TexturePixelKind, mip: usize) -> u32 {
let pixel_count = match kind {
TextureKind::Line { length } => length.shr(mip),
TextureKind::Rectangle { width, height } => width.shr(mip) * height.shr(mip),
TextureKind::Cube { width, height } => 6 * width.shr(mip) * height.shr(mip),
TextureKind::Volume {
width,
height,
depth,
} => width.shr(mip) * height.shr(mip) * depth.shr(mip),
};
match pixel_kind {
// Uncompressed formats.
TexturePixelKind::R8 | TexturePixelKind::Luminance8 => pixel_count,
TexturePixelKind::R16
| TexturePixelKind::LuminanceAlpha8
| TexturePixelKind::Luminance16
| TexturePixelKind::RG8
| TexturePixelKind::R16F => 2 * pixel_count,
TexturePixelKind::RGB8 | TexturePixelKind::BGR8 => 3 * pixel_count,
TexturePixelKind::RGBA8
| TexturePixelKind::BGRA8
| TexturePixelKind::RG16
| TexturePixelKind::LuminanceAlpha16
| TexturePixelKind::R32F => 4 * pixel_count,
TexturePixelKind::RGB16 | TexturePixelKind::RGB16F => 6 * pixel_count,
TexturePixelKind::RGBA16 => 8 * pixel_count,
TexturePixelKind::RGB32F => 12 * pixel_count,
TexturePixelKind::RGBA32F => 16 * pixel_count,
// Compressed formats.
TexturePixelKind::DXT1RGB
| TexturePixelKind::DXT1RGBA
| TexturePixelKind::DXT3RGBA
| TexturePixelKind::DXT5RGBA
| TexturePixelKind::R8RGTC
| TexturePixelKind::RG8RGTC => {
let block_size = match pixel_kind {
TexturePixelKind::DXT1RGB
| TexturePixelKind::DXT1RGBA
| TexturePixelKind::R8RGTC => 8,
TexturePixelKind::DXT3RGBA
| TexturePixelKind::DXT5RGBA
| TexturePixelKind::RG8RGTC => 16,
_ => unreachable!(),
};
match kind {
TextureKind::Line { length } => ceil_div_4(length) * block_size,
TextureKind::Rectangle { width, height } => {
ceil_div_4(width) * ceil_div_4(height) * block_size
}
TextureKind::Cube { width, height } => {
6 * ceil_div_4(width) * ceil_div_4(height) * block_size
}
TextureKind::Volume {
width,
height,
depth,
} => ceil_div_4(width) * ceil_div_4(height) * ceil_div_4(depth) * block_size,
}
}
}
}
fn mip_byte_offset(kind: TextureKind, pixel_kind: TexturePixelKind, mut mip: usize) -> usize {
// TODO: This could be done without loop.
let mut offset = 0;
loop {
offset += bytes_in_mip_level(kind, pixel_kind, mip) as usize;
mip = mip.saturating_sub(1);
if mip == 0 {
break;
}
}
offset
}
fn convert_pixel_type_enum(pixel_kind: TexturePixelKind) -> fr::PixelType {
match pixel_kind {
TexturePixelKind::R8 | TexturePixelKind::Luminance8 => fr::PixelType::U8,
TexturePixelKind::RGB8 | TexturePixelKind::BGR8 => fr::PixelType::U8x3,
TexturePixelKind::RGBA8 | TexturePixelKind::BGRA8 => fr::PixelType::U8x4,
TexturePixelKind::RG8 | TexturePixelKind::LuminanceAlpha8 => fr::PixelType::U8x2,
TexturePixelKind::R16 | TexturePixelKind::Luminance16 => fr::PixelType::U16,
TexturePixelKind::RG16 | TexturePixelKind::LuminanceAlpha16 => fr::PixelType::U16x2,
TexturePixelKind::RGB16 => fr::PixelType::U16x3,
TexturePixelKind::RGBA16 => fr::PixelType::U16x4,
TexturePixelKind::R32F => fr::PixelType::F32,
_ => unreachable!(),
}
}
fn flip_green_channel<'a, P>(pixels: impl Iterator<Item = &'a mut P>)
where
P: Pixel + 'a,
{
for pixel in pixels {
let green = &mut pixel.channels_mut()[1];
let inverted = P::Subpixel::max_value() - *green;
*green = inverted;
}
}
impl Texture {
/// Tries to load a texture from given data in one of the following formats: PNG, BMP, TGA, JPG, DDS, GIF. Use
/// this method if you want to load a texture from embedded data.
///
/// # On-demand compression and mip-map generation
///
/// The data can be compressed if needed to improve performance on GPU side. Mip-maps can be generated as well.
/// **CAVEAT:** Compression and mip-map generation **won't** be taken into account in case of **DDS** textures,
/// because DDS can already contain such data, you should generate mips and compress DDS textures manually using
/// some offline tool like DirectXTexTool or similar.
///
/// # Important notes
///
/// Textures loaded with this method won't be correctly serialized! It means that if you'll made a scene with
/// textures loaded with this method, and then save a scene, then the engine won't be able to restore the textures
/// if you'll try to load the saved scene. This is essential limitation of this method, because the engine does
/// not know where to get the data of the texture at loading. You should use `ResourceManager::request_texture`
/// in majority of cases!
///
/// # Use cases
///
/// Main use cases for this method are: procedural textures, icons for GUI.
pub fn load_from_memory(
data: &[u8],
import_options: TextureImportOptions,
) -> Result<Self, TextureError> {
// DDS is special. It can contain various kinds of textures as well as textures with
// various pixel formats.
//
// TODO: Add support for DXGI formats.
if let Ok(dds) = ddsfile::Dds::read(&mut Cursor::new(data)) {
let d3dformat = dds
.get_d3d_format()
.ok_or(TextureError::UnsupportedFormat)?;
let mip_count = dds.get_num_mipmap_levels();
let mut bytes = dds.data;
// Try to use as much formats as possible.
let pixel_kind = match d3dformat {
D3DFormat::DXT1 => TexturePixelKind::DXT1RGBA,
D3DFormat::DXT3 => TexturePixelKind::DXT3RGBA,
D3DFormat::DXT5 => TexturePixelKind::DXT5RGBA,
D3DFormat::L8 | D3DFormat::A8 => TexturePixelKind::R8,
D3DFormat::L16 => TexturePixelKind::R16,
D3DFormat::R8G8B8 => TexturePixelKind::RGB8,
D3DFormat::A8L8 => TexturePixelKind::RG8,
D3DFormat::A8R8G8B8 => {
// // ARGB8 -> RGBA8
// assert_eq!(bytes.len() % 4, 0);
// for chunk in bytes.chunks_exact_mut(4) {
// let a = chunk[0];
// let r = chunk[1];
// let g = chunk[2];
// let b = chunk[3];
// chunk[0] = r;
// chunk[1] = g;
// chunk[2] = b;
// chunk[3] = a;
// }
TexturePixelKind::RGBA8
}
D3DFormat::G16R16 => {
// GR16 -> RG16
assert_eq!(bytes.len() % 4, 0);
for chunk in bytes.chunks_exact_mut(4) {
// Red Hi + Lo bytes
let gh = chunk[0];
let gl = chunk[1];
// Green Hi + Lo bytes
let rh = chunk[2];
let rl = chunk[3];
// Swap
chunk[0] = rh;
chunk[1] = rl;
chunk[2] = gh;
chunk[3] = gl;
}
TexturePixelKind::RG16
}
_ => return Err(TextureError::UnsupportedFormat),
};
Ok(Self {
pixel_kind,
data_hash: data_hash(&bytes),
minification_filter: import_options.minification_filter,
magnification_filter: import_options.magnification_filter,
s_wrap_mode: import_options.s_wrap_mode,
t_wrap_mode: import_options.t_wrap_mode,
anisotropy: import_options.anisotropy,
mip_count,
bytes: bytes.into(),
kind: if dds.header.caps2 & Caps2::CUBEMAP == Caps2::CUBEMAP {
TextureKind::Cube {
width: dds.header.width,
height: dds.header.height,
}
} else if dds.header.caps2 & Caps2::VOLUME == Caps2::VOLUME {
TextureKind::Volume {
width: dds.header.width,
height: dds.header.height,
depth: dds.header.depth.unwrap(),
}
} else {
TextureKind::Rectangle {
width: dds.header.width,
height: dds.header.height,
}
},
is_render_target: false,
cache_index: Default::default(),
})
} else {
// Commonly used formats are all rectangle textures.
let mut dyn_img = image::load_from_memory(data)
// Try to load as TGA, this is needed because TGA is badly designed format and does not
// have an identifier in the beginning of the file (so called "magic") that allows quickly
// check if the file is really contains expected data.
.or_else(|_| image::load_from_memory_with_format(data, ImageFormat::Tga))?;
let width = dyn_img.width();
let height = dyn_img.height();
if import_options.flip_green_channel {
match dyn_img {
DynamicImage::ImageRgb8(ref mut img) => flip_green_channel(img.pixels_mut()),
DynamicImage::ImageRgba8(ref mut img) => flip_green_channel(img.pixels_mut()),
DynamicImage::ImageRgb16(ref mut img) => flip_green_channel(img.pixels_mut()),
DynamicImage::ImageRgba16(ref mut img) => flip_green_channel(img.pixels_mut()),
DynamicImage::ImageRgb32F(ref mut img) => flip_green_channel(img.pixels_mut()),
DynamicImage::ImageRgba32F(ref mut img) => flip_green_channel(img.pixels_mut()),
_ => (),
}
}
let src_pixel_kind = match dyn_img {
DynamicImage::ImageLuma8(_) => TexturePixelKind::Luminance8,
DynamicImage::ImageLumaA8(_) => TexturePixelKind::LuminanceAlpha8,
DynamicImage::ImageRgb8(_) => TexturePixelKind::RGB8,
DynamicImage::ImageRgba8(_) => TexturePixelKind::RGBA8,
DynamicImage::ImageLuma16(_) => TexturePixelKind::Luminance16,
DynamicImage::ImageLumaA16(_) => TexturePixelKind::LuminanceAlpha16,
DynamicImage::ImageRgb16(_) => TexturePixelKind::RGB16,
DynamicImage::ImageRgba16(_) => TexturePixelKind::RGBA16,
DynamicImage::ImageRgb32F(_) => TexturePixelKind::RGB32F,
DynamicImage::ImageRgba32F(_) => TexturePixelKind::RGBA32F,
_ => return Err(TextureError::UnsupportedFormat),
};
let mut final_pixel_kind = src_pixel_kind;
let mut mip_count = 0;
let mut bytes = Vec::with_capacity(
width as usize * height as usize * src_pixel_kind.size_in_bytes().unwrap_or(4),
);
if import_options.minification_filter.is_using_mip_mapping() {
let src_pixel_type = convert_pixel_type_enum(src_pixel_kind);
let mut level_width = width;
let mut level_height = height;
let mut current_level = fr::Image::from_vec_u8(
NonZeroU32::new(level_width).unwrap(),
NonZeroU32::new(level_height).unwrap(),
dyn_img.as_bytes().to_vec(),
src_pixel_type,
)
.map_err(|_| TextureError::UnsupportedFormat)?;
while level_width != 0 && level_height != 0 {
if mip_count != 0 {
let mut dst_img = fr::Image::new(
NonZeroU32::new(level_width).unwrap(),
NonZeroU32::new(level_height).unwrap(),
src_pixel_type,
);
let mut resizer = fr::Resizer::new(fr::ResizeAlg::Convolution(
import_options.mip_filter.into_filter_type(),
));
resizer
.resize(¤t_level.view(), &mut dst_img.view_mut())
.expect("Pixel types must match!");
current_level = dst_img;
}
mip_count += 1;
if import_options.compression == CompressionOptions::NoCompression {
bytes.extend_from_slice(current_level.buffer())
} else if let Some((compressed_data, new_pixel_kind)) = try_compress(
src_pixel_kind,
current_level.buffer(),
level_width as usize,
level_height as usize,
import_options.compression,
) {
final_pixel_kind = new_pixel_kind;
bytes.extend_from_slice(&compressed_data);
} else {
bytes.extend_from_slice(current_level.buffer())
}
level_width = level_width.checked_shr(1).unwrap_or_default();
level_height = level_height.checked_shr(1).unwrap_or_default();
}
} else {
mip_count = 1;
if import_options.compression == CompressionOptions::NoCompression {
bytes.extend_from_slice(dyn_img.as_bytes());
} else if let Some((compressed_data, new_pixel_kind)) = try_compress(
src_pixel_kind,
dyn_img.as_bytes(),
width as usize,
height as usize,
import_options.compression,
) {
final_pixel_kind = new_pixel_kind;
bytes.extend_from_slice(&compressed_data);
} else {
bytes.extend_from_slice(dyn_img.as_bytes())
}
}
Ok(Self {
pixel_kind: final_pixel_kind,
kind: TextureKind::Rectangle { width, height },
data_hash: data_hash(&bytes),
bytes: bytes.into(),
mip_count,
minification_filter: import_options.minification_filter,
magnification_filter: import_options.magnification_filter,
s_wrap_mode: import_options.s_wrap_mode,
t_wrap_mode: import_options.t_wrap_mode,
anisotropy: import_options.anisotropy,
is_render_target: false,
cache_index: Default::default(),
})
}
}
/// Tries to load a texture from a file.
///
/// # Notes
///
/// It is **not** public because you must use resource manager to load textures from external
/// resources.
pub(crate) async fn load_from_file<P: AsRef<Path>>(
path: P,
io: &dyn ResourceIo,
import_options: TextureImportOptions,
) -> Result<Self, TextureError> {
let data = io.load_file(path.as_ref()).await?;
Self::load_from_memory(&data, import_options)
}
/// Creates new texture instance from given parameters.
///
/// # Limitations
///
/// Currently textures with only one mip level are supported!
pub fn from_bytes(
kind: TextureKind,
pixel_kind: TexturePixelKind,
bytes: Vec<u8>,
) -> Option<Self> {
if bytes_in_mip_level(kind, pixel_kind, 0) != bytes.len() as u32 {
None
} else {
Some(Self {
kind,
data_hash: data_hash(&bytes),
bytes: bytes.into(),
pixel_kind,
..Default::default()
})
}
}
/// Sets new minification filter. It is used when texture becomes smaller.
pub fn set_minification_filter(&mut self, filter: TextureMinificationFilter) {
self.minification_filter = filter;
}
/// Returns current minification filter.
pub fn minification_filter(&self) -> TextureMinificationFilter {
self.minification_filter
}
/// Sets new magnification filter. It is used when texture is "stretching".
pub fn set_magnification_filter(&mut self, filter: TextureMagnificationFilter) {
self.magnification_filter = filter;
}
/// Returns current magnification filter.
pub fn magnification_filter(&self) -> TextureMagnificationFilter {
self.magnification_filter
}
/// Sets new S coordinate wrap mode.
pub fn set_s_wrap_mode(&mut self, s_wrap_mode: TextureWrapMode) {
self.s_wrap_mode = s_wrap_mode;
}
/// Returns current S coordinate wrap mode.
pub fn s_wrap_mode(&self) -> TextureWrapMode {
self.s_wrap_mode
}
/// Sets new T coordinate wrap mode.
pub fn set_t_wrap_mode(&mut self, t_wrap_mode: TextureWrapMode) {
self.t_wrap_mode = t_wrap_mode;
}
/// Returns current T coordinate wrap mode.
pub fn t_wrap_mode(&self) -> TextureWrapMode {
self.t_wrap_mode
}
/// Returns total mip count.
pub fn mip_count(&self) -> u32 {
self.mip_count
}
/// Returns texture kind.
pub fn kind(&self) -> TextureKind {
self.kind
}
/// Returns current data hash. Hash is guaranteed to be in actual state.
pub fn data_hash(&self) -> u64 {
self.data_hash
}
/// Returns current pixel kind.
pub fn pixel_kind(&self) -> TexturePixelKind {
self.pixel_kind
}
/// Returns current data as immutable slice.
pub fn data(&self) -> &[u8] {
&self.bytes
}
/// Tries to cast the internal data buffer to the given type. Type casting will succeed only if the the
/// size of the type `T` is equal with the size of the pixel.
///
/// ## Important notes
///
/// While this function is safe, there's no guarantee that the actual type-casted data will match the layout
/// of your data structure. For example, you could have a pixel of type `RG16`, where each pixel consumes 2
/// bytes (4 in total) and cast it to the structure `struct Rgba8 { r: u8, g: u8, b: u8, a: u8 }` which is
/// safe in terms of memory access (both are 4 bytes total), but not ok in terms of actual data. Be careful
/// when using this method.
///
/// Keep in mind, that this method will return a reference to **all** data in the texture, including all mip
/// levels. If you need to get typed data from specific mip level use [`Self::mip_level_data_of_type`].
pub fn data_of_type<T: Sized>(&self) -> Option<&[T]> {
if let Some(pixel_size) = self.pixel_kind.size_in_bytes() {
if pixel_size == std::mem::size_of::<T>() {
return Some(transmute_slice(&self.bytes));
}
}
None
}
/// Returns data of the given mip level.
pub fn mip_level_data(&self, mip: usize) -> &[u8] {
let mip_begin = mip
.checked_sub(1)
.map(|prev| mip_byte_offset(self.kind, self.pixel_kind, prev))
.unwrap_or_default();
let mip_end = mip_byte_offset(self.kind, self.pixel_kind, mip);
&self.bytes[mip_begin..mip_end]
}
/// Tries to cast the specific mip level data of the internal data buffer to the given type. Type casting
/// will succeed only if the the size of the type `T` is equal with the size of the pixel.
///
/// ## Important notes
///
/// While this function is safe, there's no guarantee that the actual type-casted data will match the layout
/// of your data structure. For example, you could have a pixel of type `RG16`, where each pixel consumes 2
/// bytes (4 in total) and cast it to the structure `struct Rgba8 { r: u8, g: u8, b: u8, a: u8 }` which is
/// safe in terms of memory access (both are 4 bytes total), but not ok in terms of actual data. Be careful
/// when using this method.
pub fn mip_level_data_of_type<T: Sized>(&self, mip: usize) -> Option<&[T]> {
if let Some(pixel_size) = self.pixel_kind.size_in_bytes() {
if pixel_size == std::mem::size_of::<T>() {
return Some(transmute_slice(self.mip_level_data(mip)));
}
}
None
}
/// Returns true if the texture is used as render target.
pub fn is_render_target(&self) -> bool {
self.is_render_target
}
/// Max samples for anisotropic filtering. Default value is 16.0 (max).
/// However real value passed to GPU will be clamped to maximum supported
/// by current GPU. To disable anisotropic filtering set this to 1.0.
/// Typical values are 2.0, 4.0, 8.0, 16.0.
pub fn set_anisotropy_level(&mut self, anisotropy: f32) {
self.anisotropy = anisotropy.max(1.0);
}
/// Returns current anisotropy level.
pub fn anisotropy_level(&self) -> f32 {
self.anisotropy
}
/// Returns a special reference holder that provides mutable access to content of the
/// texture and automatically calculates hash of the data in its destructor.
pub fn modify(&mut self) -> TextureDataRefMut<'_> {
TextureDataRefMut { texture: self }
}
}
/// A special reference holder that provides mutable access to content of the
/// texture and automatically calculates hash of the data in its destructor.
pub struct TextureDataRefMut<'a> {
texture: &'a mut Texture,
}
impl<'a> Drop for TextureDataRefMut<'a> {
fn drop(&mut self) {
self.texture.data_hash = data_hash(&self.texture.bytes);
}
}
impl<'a> Deref for TextureDataRefMut<'a> {
type Target = Texture;
fn deref(&self) -> &Self::Target {
self.texture
}
}
impl<'a> DerefMut for TextureDataRefMut<'a> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.texture
}
}
impl<'a> TextureDataRefMut<'a> {
/// Returns mutable reference to the data of the texture.
pub fn data_mut(&mut self) -> &mut [u8] {
&mut self.texture.bytes
}
/// Tries to cast the internal data buffer to the given type. Type casting will succeed only if the the
/// size of the type `T` is equal with the size of the pixel. **WARNING:** While this function is safe, there's
/// no guarantee that the actual type-casted data will match the layout of your data structure. For example,
/// you could have a pixel of type `RG16`, where each pixel consumes 2 bytes (4 in total) and cast it to the
/// structure `struct Rgba8 { r: u8, g: u8, b: u8, a: u8 }` which is safe in terms of memory access (both are 4
/// bytes total), but not ok in terms of actual data. Be careful when using the method.
pub fn data_mut_of_type<T: Sized>(&mut self) -> Option<&mut [T]> {
if let Some(pixel_size) = self.texture.pixel_kind.size_in_bytes() {
if pixel_size == std::mem::size_of::<T>() {
return Some(transmute_slice_mut(&mut self.texture.bytes));
}
}
None
}
}
#[cfg(test)]
pub mod test {
use crate::resource::texture::{
TextureKind, TexturePixelKind, TextureResource, TextureResourceExtension,
};
pub fn create_test_texture() -> TextureResource {
TextureResource::from_bytes(
TextureKind::Rectangle {
width: 1,
height: 1,
},
TexturePixelKind::RGBA8,
vec![1, 1, 1, 1],
Default::default(),
)
.unwrap()
}
}