fyrox_impl/scene/camera.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
//! Contains all methods and structures to create and manage cameras. See [`Camera`] docs for more info.
use crate::resource::texture::{
CompressionOptions, TextureImportOptions, TextureMinificationFilter,
};
use crate::{
core::{
algebra::{Matrix4, Point3, Vector2, Vector3, Vector4},
color::Color,
log::Log,
math::{aabb::AxisAlignedBoundingBox, frustum::Frustum, ray::Ray, Rect},
pool::Handle,
reflect::prelude::*,
uuid::{uuid, Uuid},
variable::InheritableVariable,
visitor::{Visit, VisitResult, Visitor},
TypeUuidProvider,
},
resource::texture::{
TextureKind, TexturePixelKind, TextureResource, TextureResourceExtension, TextureWrapMode,
},
scene::{
base::{Base, BaseBuilder},
debug::SceneDrawingContext,
graph::Graph,
node::{Node, NodeTrait, UpdateContext},
},
};
use fyrox_core::uuid_provider;
use fyrox_graph::BaseSceneGraph;
use fyrox_resource::state::LoadError;
use fyrox_resource::untyped::ResourceKind;
use lazy_static::lazy_static;
use std::{
fmt::{Display, Formatter},
ops::{Deref, DerefMut},
};
use strum_macros::{AsRefStr, EnumString, VariantNames};
/// Perspective projection make parallel lines to converge at some point. Objects will be smaller
/// with increasing distance. This the projection type "used" by human eyes, photographic lens and
/// it looks most realistic.
#[derive(Reflect, Clone, Debug, PartialEq, Visit)]
pub struct PerspectiveProjection {
/// Vertical angle at the top of viewing frustum, in radians. Larger values will increase field
/// of view and create fish-eye effect, smaller values could be used to create "binocular" effect
/// or scope effect.
#[reflect(min_value = 0.0, max_value = 6.28, step = 0.1)]
pub fov: f32,
/// Location of the near clipping plane. If it is larger than [`Self::z_far`] then it will be
/// treated like far clipping plane.
#[reflect(min_value = 0.0, step = 0.1)]
pub z_near: f32,
/// Location of the far clipping plane. If it is less than [`Self::z_near`] then it will be
/// treated like near clipping plane.
#[reflect(min_value = 0.0, step = 0.1)]
pub z_far: f32,
}
impl Default for PerspectiveProjection {
fn default() -> Self {
Self {
fov: 75.0f32.to_radians(),
z_near: 0.025,
z_far: 2048.0,
}
}
}
impl PerspectiveProjection {
/// Returns perspective projection matrix.
#[inline]
pub fn matrix(&self, frame_size: Vector2<f32>) -> Matrix4<f32> {
let limit = 10.0 * f32::EPSILON;
let z_near = self.z_far.min(self.z_near);
let mut z_far = self.z_far.max(self.z_near);
// Prevent planes from superimposing which could cause panic.
if z_far - z_near < limit {
z_far += limit;
}
Matrix4::new_perspective(
(frame_size.x / frame_size.y).max(limit),
self.fov,
z_near,
z_far,
)
}
}
/// Parallel projection. Object's size won't be affected by distance from the viewer, it can be
/// used for 2D games.
#[derive(Reflect, Clone, Debug, PartialEq, Visit)]
pub struct OrthographicProjection {
/// Location of the near clipping plane. If it is larger than [`Self::z_far`] then it will be
/// treated like far clipping plane.
#[reflect(min_value = 0.0, step = 0.1)]
pub z_near: f32,
/// Location of the far clipping plane. If it is less than [`Self::z_near`] then it will be
/// treated like near clipping plane.
#[reflect(min_value = 0.0, step = 0.1)]
pub z_far: f32,
/// Vertical size of the "view box". Horizontal size is derived value and depends on the aspect
/// ratio of the viewport. Any values very close to zero (from both sides) will be clamped to
/// some minimal value to prevent singularities from occuring.
#[reflect(step = 0.1)]
pub vertical_size: f32,
}
impl Default for OrthographicProjection {
fn default() -> Self {
Self {
z_near: 0.0,
z_far: 2048.0,
vertical_size: 5.0,
}
}
}
impl OrthographicProjection {
/// Returns orthographic projection matrix.
#[inline]
pub fn matrix(&self, frame_size: Vector2<f32>) -> Matrix4<f32> {
fn clamp_to_limit_signed(value: f32, limit: f32) -> f32 {
if value < 0.0 && -value < limit {
-limit
} else if value >= 0.0 && value < limit {
limit
} else {
value
}
}
let limit = 10.0 * f32::EPSILON;
let aspect = (frame_size.x / frame_size.y).max(limit);
// Prevent collapsing projection "box" into a point, which could cause panic.
let vertical_size = clamp_to_limit_signed(self.vertical_size, limit);
let horizontal_size = clamp_to_limit_signed(aspect * vertical_size, limit);
let z_near = self.z_far.min(self.z_near);
let mut z_far = self.z_far.max(self.z_near);
// Prevent planes from superimposing which could cause panic.
if z_far - z_near < limit {
z_far += limit;
}
let left = -horizontal_size;
let top = vertical_size;
let right = horizontal_size;
let bottom = -vertical_size;
Matrix4::new_orthographic(left, right, bottom, top, z_near, z_far)
}
}
/// A method of projection. Different projection types suitable for different purposes:
///
/// 1) Perspective projection most useful for 3D games, it makes a scene to look most natural,
/// objects will look smaller with increasing distance.
/// 2) Orthographic projection most useful for 2D games, objects won't look smaller with increasing
/// distance.
#[derive(Reflect, Clone, Debug, PartialEq, Visit, AsRefStr, EnumString, VariantNames)]
pub enum Projection {
/// See [`PerspectiveProjection`] docs.
Perspective(PerspectiveProjection),
/// See [`OrthographicProjection`] docs.
Orthographic(OrthographicProjection),
}
uuid_provider!(Projection = "0eb5bec0-fc4e-4945-99b6-e6c5392ad971");
impl Projection {
/// Sets the new value for the near clipping plane.
#[inline]
#[must_use]
pub fn with_z_near(mut self, z_near: f32) -> Self {
match self {
Projection::Perspective(ref mut v) => v.z_near = z_near,
Projection::Orthographic(ref mut v) => v.z_near = z_near,
}
self
}
/// Sets the new value for the far clipping plane.
#[inline]
#[must_use]
pub fn with_z_far(mut self, z_far: f32) -> Self {
match self {
Projection::Perspective(ref mut v) => v.z_far = z_far,
Projection::Orthographic(ref mut v) => v.z_far = z_far,
}
self
}
/// Sets the new value for the near clipping plane.
#[inline]
pub fn set_z_near(&mut self, z_near: f32) {
match self {
Projection::Perspective(v) => v.z_near = z_near,
Projection::Orthographic(v) => v.z_near = z_near,
}
}
/// Sets the new value for the far clipping plane.
#[inline]
pub fn set_z_far(&mut self, z_far: f32) {
match self {
Projection::Perspective(v) => v.z_far = z_far,
Projection::Orthographic(v) => v.z_far = z_far,
}
}
/// Returns near clipping plane distance.
#[inline]
pub fn z_near(&self) -> f32 {
match self {
Projection::Perspective(v) => v.z_near,
Projection::Orthographic(v) => v.z_near,
}
}
/// Returns far clipping plane distance.
#[inline]
pub fn z_far(&self) -> f32 {
match self {
Projection::Perspective(v) => v.z_far,
Projection::Orthographic(v) => v.z_far,
}
}
/// Returns projection matrix.
#[inline]
pub fn matrix(&self, frame_size: Vector2<f32>) -> Matrix4<f32> {
match self {
Projection::Perspective(v) => v.matrix(frame_size),
Projection::Orthographic(v) => v.matrix(frame_size),
}
}
}
impl Default for Projection {
fn default() -> Self {
Self::Perspective(PerspectiveProjection::default())
}
}
/// Exposure is a parameter that describes how many light should be collected for one
/// frame. The higher the value, the more brighter the final frame will be and vice versa.
#[derive(Visit, Copy, Clone, PartialEq, Debug, Reflect, AsRefStr, EnumString, VariantNames)]
pub enum Exposure {
/// Automatic exposure based on the frame luminance. High luminance values will result
/// in lower exposure levels and vice versa. This is default option.
///
/// # Equation
///
/// `exposure = key_value / clamp(avg_luminance, min_luminance, max_luminance)`
Auto {
/// A key value in the formula above. Default is 0.01556.
#[reflect(min_value = 0.0, step = 0.1)]
key_value: f32,
/// A min luminance value in the formula above. Default is 0.00778.
#[reflect(min_value = 0.0, step = 0.1)]
min_luminance: f32,
/// A max luminance value in the formula above. Default is 64.0.
#[reflect(min_value = 0.0, step = 0.1)]
max_luminance: f32,
},
/// Specific exposure level. To "disable" any HDR effects use [`std::f32::consts::E`] as a value.
Manual(f32),
}
uuid_provider!(Exposure = "0e35ee3d-8baa-4b0c-b3dd-6c31a08c121e");
impl Default for Exposure {
fn default() -> Self {
Self::Auto {
key_value: 0.01556,
min_luminance: 0.00778,
max_luminance: 64.0,
}
}
}
/// Camera allows you to see world from specific point in world. You must have at least one camera in
/// your scene to see anything.
///
/// ## Projection
///
/// There are two main projection modes supported by Camera node: perspective and orthogonal projections.
/// Perspective projection is used primarily to display 3D scenes, while orthogonal projection could be
/// used for both 3D and 2D. Orthogonal projection could also be used in CAD software.
///
/// ## Skybox
///
/// Skybox is a cube around the camera with six textures forming seamless "sky". It could be anything,
/// starting from simple blue sky and ending with outer space.
///
/// ## Multiple cameras
///
/// Fyrox supports multiple cameras per scene, it means that you can create split screen games, make
/// picture-in-picture insertions in your main camera view and any other combinations you need.
///
/// ## Performance
///
/// Each camera forces engine to re-render same scene one more time, which may cause almost double load
/// of your GPU.
#[derive(Debug, Visit, Reflect, Clone)]
pub struct Camera {
base: Base,
#[reflect(setter = "set_projection")]
projection: InheritableVariable<Projection>,
#[reflect(setter = "set_viewport")]
viewport: InheritableVariable<Rect<f32>>,
#[reflect(setter = "set_enabled")]
enabled: InheritableVariable<bool>,
#[reflect(setter = "set_skybox")]
sky_box: InheritableVariable<Option<SkyBox>>,
#[reflect(setter = "set_environment")]
environment: InheritableVariable<Option<TextureResource>>,
#[reflect(setter = "set_exposure")]
exposure: InheritableVariable<Exposure>,
#[reflect(setter = "set_color_grading_lut")]
color_grading_lut: InheritableVariable<Option<ColorGradingLut>>,
#[reflect(setter = "set_color_grading_enabled")]
color_grading_enabled: InheritableVariable<bool>,
#[visit(skip)]
#[reflect(hidden)]
view_matrix: Matrix4<f32>,
#[visit(skip)]
#[reflect(hidden)]
projection_matrix: Matrix4<f32>,
}
impl Deref for Camera {
type Target = Base;
fn deref(&self) -> &Self::Target {
&self.base
}
}
impl DerefMut for Camera {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.base
}
}
impl Default for Camera {
fn default() -> Self {
CameraBuilder::new(BaseBuilder::new()).build_camera()
}
}
impl TypeUuidProvider for Camera {
fn type_uuid() -> Uuid {
uuid!("198d3aca-433c-4ce1-bb25-3190699b757f")
}
}
/// A set of camera fitting parameters for different projection modes. You should take these parameters
/// and modify camera position and projection accordingly. In case of perspective projection all you need
/// to do is to set new world-space position of the camera. In cae of orthographic projection, do previous
/// step and also modify vertical size of orthographic projection (see [`OrthographicProjection`] for more
/// info).
pub enum FitParameters {
/// Fitting parameters for perspective projection.
Perspective {
/// New world-space position of the camera.
position: Vector3<f32>,
/// Distance from the center of an AABB of the object to the `position`.
distance: f32,
},
/// Fitting parameters for orthographic projection.
Orthographic {
/// New world-space position of the camera.
position: Vector3<f32>,
/// New vertical size for orthographic projection.
vertical_size: f32,
},
}
impl Camera {
/// Explicitly calculates view and projection matrices. Normally, you should not call
/// this method, it will be called automatically when new frame starts.
#[inline]
pub fn calculate_matrices(&mut self, frame_size: Vector2<f32>) {
let pos = self.base.global_position();
let look = self.base.look_vector();
let up = self.base.up_vector();
self.view_matrix = Matrix4::look_at_rh(&Point3::from(pos), &Point3::from(pos + look), &up);
self.projection_matrix = self.projection.matrix(frame_size);
}
/// Sets new viewport in resolution-independent format. In other words
/// each parameter of viewport defines portion of your current resolution
/// in percents. In example viewport (0.0, 0.0, 0.5, 1.0) will force camera
/// to use left half of your screen and (0.5, 0.0, 0.5, 1.0) - right half.
/// Why not just use pixels directly? Because you can change resolution while
/// your application is running and you'd be force to manually recalculate
/// pixel values everytime when resolution changes.
pub fn set_viewport(&mut self, mut viewport: Rect<f32>) -> Rect<f32> {
viewport.position.x = viewport.position.x.clamp(0.0, 1.0);
viewport.position.y = viewport.position.y.clamp(0.0, 1.0);
viewport.size.x = viewport.size.x.clamp(0.0, 1.0);
viewport.size.y = viewport.size.y.clamp(0.0, 1.0);
self.viewport.set_value_and_mark_modified(viewport)
}
/// Returns current viewport.
pub fn viewport(&self) -> Rect<f32> {
*self.viewport
}
/// Calculates viewport rectangle in pixels based on internal resolution-independent
/// viewport. It is useful when you need to get real viewport rectangle in pixels.
///
/// # Notes
///
/// Viewport cannot be less than 1x1 pixel in size, so the method clamps values to
/// range `[1; infinity]`. This is strictly needed because having viewport of 0 in size
/// will cause panics in various places. It happens because viewport size is used as
/// divisor in math formulas, but you cannot divide by zero.
#[inline]
pub fn viewport_pixels(&self, frame_size: Vector2<f32>) -> Rect<i32> {
Rect::new(
(self.viewport.x() * frame_size.x) as i32,
(self.viewport.y() * frame_size.y) as i32,
((self.viewport.w() * frame_size.x) as i32).max(1),
((self.viewport.h() * frame_size.y) as i32).max(1),
)
}
/// Returns current view-projection matrix.
#[inline]
pub fn view_projection_matrix(&self) -> Matrix4<f32> {
self.projection_matrix * self.view_matrix
}
/// Returns current projection matrix.
#[inline]
pub fn projection_matrix(&self) -> Matrix4<f32> {
self.projection_matrix
}
/// Returns current view matrix.
#[inline]
pub fn view_matrix(&self) -> Matrix4<f32> {
self.view_matrix
}
/// Returns inverse view matrix.
#[inline]
pub fn inv_view_matrix(&self) -> Option<Matrix4<f32>> {
self.view_matrix.try_inverse()
}
/// Returns current projection mode.
#[inline]
pub fn projection(&self) -> &Projection {
&self.projection
}
/// Returns current projection mode.
#[inline]
pub fn projection_value(&self) -> Projection {
(*self.projection).clone()
}
/// Returns current projection mode as mutable reference.
#[inline]
pub fn projection_mut(&mut self) -> &mut Projection {
self.projection.get_value_mut_and_mark_modified()
}
/// Sets current projection mode.
#[inline]
pub fn set_projection(&mut self, projection: Projection) -> Projection {
self.projection.set_value_and_mark_modified(projection)
}
/// Returns state of camera: enabled or not.
#[inline]
pub fn is_enabled(&self) -> bool {
*self.enabled
}
/// Enables or disables camera. Disabled cameras will be ignored during
/// rendering. This allows you to exclude views from specific cameras from
/// final picture.
#[inline]
pub fn set_enabled(&mut self, enabled: bool) -> bool {
self.enabled.set_value_and_mark_modified(enabled)
}
/// Sets new skybox. Could be None if no skybox needed.
pub fn set_skybox(&mut self, skybox: Option<SkyBox>) -> Option<SkyBox> {
self.sky_box.set_value_and_mark_modified(skybox)
}
/// Return optional mutable reference to current skybox.
pub fn skybox_mut(&mut self) -> Option<&mut SkyBox> {
self.sky_box.get_value_mut_and_mark_modified().as_mut()
}
/// Return optional shared reference to current skybox.
pub fn skybox_ref(&self) -> Option<&SkyBox> {
self.sky_box.as_ref()
}
/// Replaces the skybox.
pub fn replace_skybox(&mut self, new: Option<SkyBox>) -> Option<SkyBox> {
std::mem::replace(self.sky_box.get_value_mut_and_mark_modified(), new)
}
/// Sets new environment.
pub fn set_environment(
&mut self,
environment: Option<TextureResource>,
) -> Option<TextureResource> {
self.environment.set_value_and_mark_modified(environment)
}
/// Return optional mutable reference to current environment.
pub fn environment_mut(&mut self) -> Option<&mut TextureResource> {
self.environment.get_value_mut_and_mark_modified().as_mut()
}
/// Return optional shared reference to current environment.
pub fn environment_ref(&self) -> Option<&TextureResource> {
self.environment.as_ref()
}
/// Return current environment map.
pub fn environment_map(&self) -> Option<TextureResource> {
(*self.environment).clone()
}
/// Creates picking ray from given screen coordinates.
pub fn make_ray(&self, screen_coord: Vector2<f32>, screen_size: Vector2<f32>) -> Ray {
let viewport = self.viewport_pixels(screen_size);
let nx = screen_coord.x / (viewport.w() as f32) * 2.0 - 1.0;
// Invert y here because OpenGL has origin at left bottom corner,
// but window coordinates starts from left *upper* corner.
let ny = (viewport.h() as f32 - screen_coord.y) / (viewport.h() as f32) * 2.0 - 1.0;
let inv_view_proj = self
.view_projection_matrix()
.try_inverse()
.unwrap_or_default();
let near = inv_view_proj * Vector4::new(nx, ny, -1.0, 1.0);
let far = inv_view_proj * Vector4::new(nx, ny, 1.0, 1.0);
let begin = near.xyz().scale(1.0 / near.w);
let end = far.xyz().scale(1.0 / far.w);
Ray::from_two_points(begin, end)
}
/// Calculates new fitting parameters for the given axis-aligned bounding box using current camera's
/// global transform and provided aspect ratio. See [`FitParameters`] docs for more info.
///
/// This method returns fitting parameters and **do not** modify camera's state. It is needed, because in
/// some cases your camera could be attached to some sort of a hinge node and setting its local position
/// in order to fit it to the given AABB would break the preset spatial relations between nodes. Instead,
/// the method returns a set of parameters that can be used as you want.
#[inline]
#[must_use]
pub fn fit(&self, aabb: &AxisAlignedBoundingBox, aspect_ratio: f32) -> FitParameters {
let look_vector = self
.look_vector()
.try_normalize(f32::EPSILON)
.unwrap_or_default();
match self.projection.deref() {
Projection::Perspective(perspective) => {
let radius = aabb.half_extents().max();
let distance = radius / (perspective.fov * 0.5).sin();
FitParameters::Perspective {
position: aabb.center() - look_vector.scale(distance),
distance,
}
}
Projection::Orthographic(_) => {
let mut min_x = f32::MAX;
let mut min_y = f32::MAX;
let mut max_x = -f32::MAX;
let mut max_y = -f32::MAX;
let inv = self.global_transform().try_inverse().unwrap_or_default();
for point in aabb.corners() {
let local = inv.transform_point(&Point3::from(point));
if local.x < min_x {
min_x = local.x;
}
if local.y < min_y {
min_y = local.y;
}
if local.x > max_x {
max_x = local.x;
}
if local.y > max_y {
max_y = local.y;
}
}
FitParameters::Orthographic {
position: aabb.center() - look_vector.scale((aabb.max - aabb.min).norm()),
vertical_size: (max_y - min_y).max((max_x - min_x) * aspect_ratio),
}
}
}
}
/// Returns current frustum of the camera.
#[inline]
pub fn frustum(&self) -> Frustum {
Frustum::from_view_projection_matrix(self.view_projection_matrix()).unwrap_or_default()
}
/// Projects given world space point on screen plane.
pub fn project(
&self,
world_pos: Vector3<f32>,
screen_size: Vector2<f32>,
) -> Option<Vector2<f32>> {
let viewport = self.viewport_pixels(screen_size);
let proj = self.view_projection_matrix()
* Vector4::new(world_pos.x, world_pos.y, world_pos.z, 1.0);
if proj.w != 0.0 && proj.z >= 0.0 {
let k = (1.0 / proj.w) * 0.5;
Some(Vector2::new(
viewport.x() as f32 + viewport.w() as f32 * (proj.x * k + 0.5),
viewport.h() as f32
- (viewport.y() as f32 + viewport.h() as f32 * (proj.y * k + 0.5)),
))
} else {
None
}
}
/// Sets new color grading LUT.
pub fn set_color_grading_lut(
&mut self,
lut: Option<ColorGradingLut>,
) -> Option<ColorGradingLut> {
self.color_grading_lut.set_value_and_mark_modified(lut)
}
/// Returns current color grading map.
pub fn color_grading_lut(&self) -> Option<ColorGradingLut> {
(*self.color_grading_lut).clone()
}
/// Returns current color grading map by ref.
pub fn color_grading_lut_ref(&self) -> Option<&ColorGradingLut> {
self.color_grading_lut.as_ref()
}
/// Enables or disables color grading.
pub fn set_color_grading_enabled(&mut self, enable: bool) -> bool {
self.color_grading_enabled
.set_value_and_mark_modified(enable)
}
/// Whether color grading enabled or not.
pub fn color_grading_enabled(&self) -> bool {
*self.color_grading_enabled
}
/// Sets new exposure. See `Exposure` struct docs for more info.
pub fn set_exposure(&mut self, exposure: Exposure) -> Exposure {
self.exposure.set_value_and_mark_modified(exposure)
}
/// Returns current exposure value.
pub fn exposure(&self) -> Exposure {
*self.exposure
}
}
impl NodeTrait for Camera {
crate::impl_query_component!();
/// Returns current **local-space** bounding box.
#[inline]
fn local_bounding_box(&self) -> AxisAlignedBoundingBox {
// TODO: Maybe calculate AABB using frustum corners?
self.base.local_bounding_box()
}
/// Returns current **world-space** bounding box.
fn world_bounding_box(&self) -> AxisAlignedBoundingBox {
self.base.world_bounding_box()
}
fn id(&self) -> Uuid {
Self::type_uuid()
}
fn update(&mut self, context: &mut UpdateContext) {
self.calculate_matrices(context.frame_size);
}
fn debug_draw(&self, ctx: &mut SceneDrawingContext) {
let transform = self.global_transform.get();
ctx.draw_pyramid(
self.frustum().center(),
self.frustum().right_top_front_corner(),
self.frustum().left_top_front_corner(),
self.frustum().left_bottom_front_corner(),
self.frustum().right_bottom_front_corner(),
Color::GREEN,
transform,
);
}
}
/// All possible error that may occur during color grading look-up table creation.
#[derive(Debug)]
pub enum ColorGradingLutCreationError {
/// There is not enough data in provided texture to build LUT.
NotEnoughData {
/// Required amount of bytes.
required: usize,
/// Actual data size.
current: usize,
},
/// Pixel format is not supported. It must be either RGB8 or RGBA8.
InvalidPixelFormat(TexturePixelKind),
/// Texture error.
Texture(LoadError),
}
impl Display for ColorGradingLutCreationError {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
ColorGradingLutCreationError::NotEnoughData { required, current } => {
write!(
f,
"There is not enough data in provided \
texture to build LUT. Required: {required}, current: {current}.",
)
}
ColorGradingLutCreationError::InvalidPixelFormat(v) => {
write!(
f,
"Pixel format is not supported. It must be either RGB8 \
or RGBA8, but texture has {v:?} pixel format"
)
}
ColorGradingLutCreationError::Texture(v) => {
write!(f, "Texture load error: {v:?}")
}
}
}
}
/// Color grading look up table (LUT). Color grading is used to modify color space of the
/// rendered frame; it maps one color space to another. It is widely used effect in games,
/// you've probably noticed either "warmness" or "coldness" in colors in various scenes in
/// games - this is achieved by color grading.
///
/// See [more info in Unreal engine docs](https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/PostProcessEffects/UsingLUTs/)
#[derive(Visit, Clone, Default, PartialEq, Debug, Reflect, Eq)]
pub struct ColorGradingLut {
unwrapped_lut: Option<TextureResource>,
#[visit(skip)]
#[reflect(hidden)]
lut: Option<TextureResource>,
}
uuid_provider!(ColorGradingLut = "bca9c90a-7cde-4960-8814-c132edfc9614");
impl ColorGradingLut {
/// Creates 3D look-up texture from 2D strip.
///
/// # Input Texture Requirements
///
/// Width: 1024px
/// Height: 16px
/// Pixel Format: RGB8/RGBA8
///
/// # Usage
///
/// Typical usage would be:
///
/// ```no_run
/// # use fyrox_impl::scene::camera::ColorGradingLut;
/// # use fyrox_impl::asset::manager::{ResourceManager};
/// # use fyrox_impl::resource::texture::Texture;
///
/// async fn create_lut(resource_manager: ResourceManager) -> ColorGradingLut {
/// ColorGradingLut::new(resource_manager.request::<Texture>(
/// "your_lut.jpg",
/// ))
/// .await
/// .unwrap()
/// }
/// ```
///
/// Then pass LUT to either CameraBuilder or to camera instance, and don't forget to enable
/// color grading.
pub async fn new(unwrapped_lut: TextureResource) -> Result<Self, ColorGradingLutCreationError> {
match unwrapped_lut.await {
Ok(unwrapped_lut) => {
let data = unwrapped_lut.data_ref();
if data.pixel_kind() != TexturePixelKind::RGBA8
&& data.pixel_kind() != TexturePixelKind::RGB8
{
return Err(ColorGradingLutCreationError::InvalidPixelFormat(
data.pixel_kind(),
));
}
let bytes = data.data();
const RGBA8_SIZE: usize = 16 * 16 * 16 * 4;
const RGB8_SIZE: usize = 16 * 16 * 16 * 3;
if data.pixel_kind() == TexturePixelKind::RGBA8 {
if bytes.len() != RGBA8_SIZE {
return Err(ColorGradingLutCreationError::NotEnoughData {
required: RGBA8_SIZE,
current: bytes.len(),
});
}
} else if bytes.len() != RGB8_SIZE {
return Err(ColorGradingLutCreationError::NotEnoughData {
required: RGB8_SIZE,
current: bytes.len(),
});
}
let pixel_size = if data.pixel_kind() == TexturePixelKind::RGBA8 {
4
} else {
3
};
let mut lut_bytes = Vec::with_capacity(16 * 16 * 16 * 3);
for z in 0..16 {
for y in 0..16 {
for x in 0..16 {
let pixel_index = z * 16 + y * 16 * 16 + x;
let pixel_byte_pos = pixel_index * pixel_size;
lut_bytes.push(bytes[pixel_byte_pos]); // R
lut_bytes.push(bytes[pixel_byte_pos + 1]); // G
lut_bytes.push(bytes[pixel_byte_pos + 2]); // B
}
}
}
let lut = TextureResource::from_bytes(
TextureKind::Volume {
width: 16,
height: 16,
depth: 16,
},
TexturePixelKind::RGB8,
lut_bytes,
ResourceKind::Embedded,
)
.unwrap();
let mut lut_ref = lut.data_ref();
lut_ref.set_s_wrap_mode(TextureWrapMode::ClampToEdge);
lut_ref.set_t_wrap_mode(TextureWrapMode::ClampToEdge);
drop(lut_ref);
drop(data);
Ok(Self {
lut: Some(lut),
unwrapped_lut: Some(unwrapped_lut),
})
}
Err(e) => Err(ColorGradingLutCreationError::Texture(e)),
}
}
/// Returns color grading unwrapped look-up table. This is initial texture that was
/// used to create the look-up table.
pub fn unwrapped_lut(&self) -> TextureResource {
self.unwrapped_lut.clone().unwrap()
}
/// Returns 3D color grading look-up table ready for use on GPU.
pub fn lut(&self) -> TextureResource {
self.lut.clone().unwrap()
}
/// Returns 3D color grading look-up table by ref ready for use on GPU.
pub fn lut_ref(&self) -> &TextureResource {
self.lut.as_ref().unwrap()
}
}
/// A fixed set of possible sky boxes, that can be selected when building [`Camera`] scene node.
#[derive(Default)]
pub enum SkyBoxKind {
/// Uses built-in sky box. This is default sky box.
#[default]
Builtin,
/// No sky box. Surroundings will be filled with back buffer clear color.
None,
/// Specific skybox. One can be built using [`SkyBoxBuilder`].
Specific(SkyBox),
}
fn load_texture(data: &[u8], id: &str) -> TextureResource {
TextureResource::load_from_memory(
ResourceKind::External(id.into()),
data,
TextureImportOptions::default()
.with_compression(CompressionOptions::NoCompression)
.with_minification_filter(TextureMinificationFilter::Linear),
)
.ok()
.unwrap()
}
lazy_static! {
static ref BUILT_IN_SKYBOX_FRONT: TextureResource = load_texture(
include_bytes!("skybox/front.png"),
"__BUILT_IN_SKYBOX_FRONT",
);
static ref BUILT_IN_SKYBOX_BACK: TextureResource =
load_texture(include_bytes!("skybox/back.png"), "__BUILT_IN_SKYBOX_BACK",);
static ref BUILT_IN_SKYBOX_TOP: TextureResource =
load_texture(include_bytes!("skybox/top.png"), "__BUILT_IN_SKYBOX_TOP",);
static ref BUILT_IN_SKYBOX_BOTTOM: TextureResource = load_texture(
include_bytes!("skybox/bottom.png"),
"__BUILT_IN_SKYBOX_BOTTOM",
);
static ref BUILT_IN_SKYBOX_LEFT: TextureResource =
load_texture(include_bytes!("skybox/left.png"), "__BUILT_IN_SKYBOX_LEFT",);
static ref BUILT_IN_SKYBOX_RIGHT: TextureResource = load_texture(
include_bytes!("skybox/right.png"),
"__BUILT_IN_SKYBOX_RIGHT",
);
static ref BUILT_IN_SKYBOX: SkyBox = SkyBoxKind::make_built_in_skybox();
}
impl SkyBoxKind {
fn make_built_in_skybox() -> SkyBox {
let front = BUILT_IN_SKYBOX_FRONT.clone();
let back = BUILT_IN_SKYBOX_BACK.clone();
let top = BUILT_IN_SKYBOX_TOP.clone();
let bottom = BUILT_IN_SKYBOX_BOTTOM.clone();
let left = BUILT_IN_SKYBOX_LEFT.clone();
let right = BUILT_IN_SKYBOX_RIGHT.clone();
SkyBoxBuilder {
front: Some(front),
back: Some(back),
left: Some(left),
right: Some(right),
top: Some(top),
bottom: Some(bottom),
}
.build()
.unwrap()
}
/// Returns a references to built-in sky box.
pub fn built_in_skybox() -> &'static SkyBox {
&BUILT_IN_SKYBOX
}
/// Returns an array with references to the textures being used in built-in sky box. The order is:
/// front, back, top, bottom, left, right.
pub fn built_in_skybox_textures() -> [&'static TextureResource; 6] {
[
&BUILT_IN_SKYBOX_FRONT,
&BUILT_IN_SKYBOX_BACK,
&BUILT_IN_SKYBOX_TOP,
&BUILT_IN_SKYBOX_BOTTOM,
&BUILT_IN_SKYBOX_LEFT,
&BUILT_IN_SKYBOX_RIGHT,
]
}
}
/// Camera builder is used to create new camera in declarative manner.
/// This is typical implementation of Builder pattern.
pub struct CameraBuilder {
base_builder: BaseBuilder,
fov: f32,
z_near: f32,
z_far: f32,
viewport: Rect<f32>,
enabled: bool,
skybox: SkyBoxKind,
environment: Option<TextureResource>,
exposure: Exposure,
color_grading_lut: Option<ColorGradingLut>,
color_grading_enabled: bool,
projection: Projection,
}
impl CameraBuilder {
/// Creates new camera builder using given base node builder.
pub fn new(base_builder: BaseBuilder) -> Self {
Self {
enabled: true,
base_builder,
fov: 75.0f32.to_radians(),
z_near: 0.025,
z_far: 2048.0,
viewport: Rect::new(0.0, 0.0, 1.0, 1.0),
skybox: SkyBoxKind::Builtin,
environment: None,
exposure: Exposure::Manual(std::f32::consts::E),
color_grading_lut: None,
color_grading_enabled: false,
projection: Projection::default(),
}
}
/// Sets desired field of view in radians.
pub fn with_fov(mut self, fov: f32) -> Self {
self.fov = fov;
self
}
/// Sets desired near projection plane.
pub fn with_z_near(mut self, z_near: f32) -> Self {
self.z_near = z_near;
self
}
/// Sets desired far projection plane.
pub fn with_z_far(mut self, z_far: f32) -> Self {
self.z_far = z_far;
self
}
/// Sets desired viewport.
pub fn with_viewport(mut self, viewport: Rect<f32>) -> Self {
self.viewport = viewport;
self
}
/// Sets desired initial state of camera: enabled or disabled.
pub fn enabled(mut self, enabled: bool) -> Self {
self.enabled = enabled;
self
}
/// Sets desired skybox.
pub fn with_skybox(mut self, skybox: SkyBox) -> Self {
self.skybox = SkyBoxKind::Specific(skybox);
self
}
/// Sets desired skybox.
pub fn with_specific_skybox(mut self, skybox_kind: SkyBoxKind) -> Self {
self.skybox = skybox_kind;
self
}
/// Sets desired environment map.
pub fn with_environment(mut self, environment: TextureResource) -> Self {
self.environment = Some(environment);
self
}
/// Sets desired color grading LUT.
pub fn with_color_grading_lut(mut self, lut: ColorGradingLut) -> Self {
self.color_grading_lut = Some(lut);
self
}
/// Sets whether color grading should be enabled or not.
pub fn with_color_grading_enabled(mut self, enabled: bool) -> Self {
self.color_grading_enabled = enabled;
self
}
/// Sets desired exposure options.
pub fn with_exposure(mut self, exposure: Exposure) -> Self {
self.exposure = exposure;
self
}
/// Sets desired projection mode.
pub fn with_projection(mut self, projection: Projection) -> Self {
self.projection = projection;
self
}
/// Creates new instance of camera.
pub fn build_camera(self) -> Camera {
Camera {
enabled: self.enabled.into(),
base: self.base_builder.build_base(),
projection: self.projection.into(),
viewport: self.viewport.into(),
// No need to calculate these matrices - they'll be automatically
// recalculated before rendering.
view_matrix: Matrix4::identity(),
projection_matrix: Matrix4::identity(),
sky_box: InheritableVariable::new_modified(match self.skybox {
SkyBoxKind::Builtin => Some(SkyBoxKind::built_in_skybox().clone()),
SkyBoxKind::None => None,
SkyBoxKind::Specific(skybox) => Some(skybox),
}),
environment: self.environment.into(),
exposure: self.exposure.into(),
color_grading_lut: self.color_grading_lut.into(),
color_grading_enabled: self.color_grading_enabled.into(),
}
}
/// Creates new instance of camera node.
pub fn build_node(self) -> Node {
Node::new(self.build_camera())
}
/// Creates new instance of camera node and adds it to the graph.
pub fn build(self, graph: &mut Graph) -> Handle<Node> {
graph.add_node(self.build_node())
}
}
/// SkyBox builder is used to create new skybox in declarative manner.
pub struct SkyBoxBuilder {
/// Texture for front face.
pub front: Option<TextureResource>,
/// Texture for back face.
pub back: Option<TextureResource>,
/// Texture for left face.
pub left: Option<TextureResource>,
/// Texture for right face.
pub right: Option<TextureResource>,
/// Texture for top face.
pub top: Option<TextureResource>,
/// Texture for bottom face.
pub bottom: Option<TextureResource>,
}
impl SkyBoxBuilder {
/// Sets desired front face of cubemap.
pub fn with_front(mut self, texture: TextureResource) -> Self {
self.front = Some(texture);
self
}
/// Sets desired back face of cubemap.
pub fn with_back(mut self, texture: TextureResource) -> Self {
self.back = Some(texture);
self
}
/// Sets desired left face of cubemap.
pub fn with_left(mut self, texture: TextureResource) -> Self {
self.left = Some(texture);
self
}
/// Sets desired right face of cubemap.
pub fn with_right(mut self, texture: TextureResource) -> Self {
self.right = Some(texture);
self
}
/// Sets desired top face of cubemap.
pub fn with_top(mut self, texture: TextureResource) -> Self {
self.top = Some(texture);
self
}
/// Sets desired front face of cubemap.
pub fn with_bottom(mut self, texture: TextureResource) -> Self {
self.bottom = Some(texture);
self
}
/// Creates a new instance of skybox.
pub fn build(self) -> Result<SkyBox, SkyBoxError> {
let mut skybox = SkyBox {
left: self.left,
right: self.right,
top: self.top,
bottom: self.bottom,
front: self.front,
back: self.back,
cubemap: None,
};
skybox.create_cubemap()?;
Ok(skybox)
}
}
/// Skybox is a huge box around camera. Each face has its own texture, when textures are
/// properly made, there is no seams and you get good decoration which contains static
/// skies and/or some other objects (mountains, buildings, etc.). Usually skyboxes used
/// in outdoor scenes, however real use of it limited only by your imagination. Skybox
/// will be drawn first, none of objects could be drawn before skybox.
#[derive(Debug, Clone, Default, PartialEq, Reflect, Visit, Eq)]
pub struct SkyBox {
/// Texture for front face.
#[reflect(setter = "set_front")]
pub(crate) front: Option<TextureResource>,
/// Texture for back face.
#[reflect(setter = "set_back")]
pub(crate) back: Option<TextureResource>,
/// Texture for left face.
#[reflect(setter = "set_left")]
pub(crate) left: Option<TextureResource>,
/// Texture for right face.
#[reflect(setter = "set_right")]
pub(crate) right: Option<TextureResource>,
/// Texture for top face.
#[reflect(setter = "set_top")]
pub(crate) top: Option<TextureResource>,
/// Texture for bottom face.
#[reflect(setter = "set_bottom")]
pub(crate) bottom: Option<TextureResource>,
/// Cubemap texture
#[reflect(hidden)]
#[visit(skip)]
pub(crate) cubemap: Option<TextureResource>,
}
uuid_provider!(SkyBox = "45f359f1-e26f-4ace-81df-097f63474c72");
/// An error that may occur during skybox creation.
#[derive(Debug)]
pub enum SkyBoxError {
/// Texture kind is not TextureKind::Rectangle
UnsupportedTextureKind(TextureKind),
/// Cube map was failed to build.
UnableToBuildCubeMap,
/// Input texture is not square.
NonSquareTexture {
/// Texture index.
index: usize,
/// Width of the faulty texture.
width: u32,
/// Height of the faulty texture.
height: u32,
},
/// Some input texture differs in size or pixel kind.
DifferentTexture {
/// Actual width of the first valid texture in the input set.
expected_width: u32,
/// Actual height of the first valid texture in the input set.
expected_height: u32,
/// Actual pixel kind of the first valid texture in the input set.
expected_pixel_kind: TexturePixelKind,
/// Index of the faulty input texture.
index: usize,
/// Width of the faulty texture.
actual_width: u32,
/// Height of the faulty texture.
actual_height: u32,
/// Pixel kind of the faulty texture.
actual_pixel_kind: TexturePixelKind,
},
/// Occurs when one of the input textures is either still loading or failed to load.
TextureIsNotReady {
/// Index of the faulty input texture.
index: usize,
},
}
impl SkyBox {
/// Returns cubemap texture
pub fn cubemap(&self) -> Option<TextureResource> {
self.cubemap.clone()
}
/// Returns cubemap texture
pub fn cubemap_ref(&self) -> Option<&TextureResource> {
self.cubemap.as_ref()
}
/// Validates input set of texture and checks if it possible to create a cube map from them.
/// There are two main conditions for successful cube map creation:
/// - All textures must have same width and height, and width must be equal to height.
/// - All textures must have same pixel kind.
pub fn validate(&self) -> Result<(), SkyBoxError> {
struct TextureInfo {
pixel_kind: TexturePixelKind,
width: u32,
height: u32,
}
let mut first_info: Option<TextureInfo> = None;
for (index, texture) in self.textures().iter().enumerate() {
if let Some(texture) = texture {
if let Some(texture) = texture.state().data() {
if let TextureKind::Rectangle { width, height } = texture.kind() {
if width != height {
return Err(SkyBoxError::NonSquareTexture {
index,
width,
height,
});
}
if let Some(first_info) = first_info.as_mut() {
if first_info.width != width
|| first_info.height != height
|| first_info.pixel_kind != texture.pixel_kind()
{
return Err(SkyBoxError::DifferentTexture {
expected_width: first_info.width,
expected_height: first_info.height,
expected_pixel_kind: first_info.pixel_kind,
index,
actual_width: width,
actual_height: height,
actual_pixel_kind: texture.pixel_kind(),
});
}
} else {
first_info = Some(TextureInfo {
pixel_kind: texture.pixel_kind(),
width,
height,
});
}
}
} else {
return Err(SkyBoxError::TextureIsNotReady { index });
}
}
}
Ok(())
}
/// Creates a cubemap using provided faces. If some face has not been provided corresponding side will be black.
///
/// # Important notes.
///
/// It will fail if provided face's kind is not TextureKind::Rectangle.
pub fn create_cubemap(&mut self) -> Result<(), SkyBoxError> {
self.validate()?;
let (kind, pixel_kind, bytes_per_face) =
self.textures().iter().find(|face| face.is_some()).map_or(
(
TextureKind::Rectangle {
width: 1,
height: 1,
},
TexturePixelKind::R8,
1,
),
|face| {
let face = face.clone().unwrap();
let data = face.data_ref();
(data.kind(), data.pixel_kind(), data.mip_level_data(0).len())
},
);
let (width, height) = match kind {
TextureKind::Rectangle { width, height } => (width, height),
_ => return Err(SkyBoxError::UnsupportedTextureKind(kind)),
};
let mut data = Vec::<u8>::with_capacity(bytes_per_face * 6);
for face in self.textures().iter() {
if let Some(f) = face.clone() {
data.extend(f.data_ref().mip_level_data(0));
} else {
let black_face_data = vec![0; bytes_per_face];
data.extend(black_face_data);
}
}
let cubemap = TextureResource::from_bytes(
TextureKind::Cube { width, height },
pixel_kind,
data,
ResourceKind::Embedded,
)
.ok_or(SkyBoxError::UnableToBuildCubeMap)?;
let mut cubemap_ref = cubemap.data_ref();
cubemap_ref.set_s_wrap_mode(TextureWrapMode::ClampToEdge);
cubemap_ref.set_t_wrap_mode(TextureWrapMode::ClampToEdge);
drop(cubemap_ref);
self.cubemap = Some(cubemap);
Ok(())
}
/// Returns slice with all textures, where: 0 - Left, 1 - Right, 2 - Top, 3 - Bottom
/// 4 - Front, 5 - Back.
///
/// # Important notes.
///
/// These textures are **not** used for rendering! The renderer uses cube map made of these
/// textures. Public access for these textures is needed in case you need to read internals
/// of the textures.
pub fn textures(&self) -> [Option<TextureResource>; 6] {
[
self.left.clone(),
self.right.clone(),
self.top.clone(),
self.bottom.clone(),
self.front.clone(),
self.back.clone(),
]
}
/// Set new texture for the left side of the skybox.
pub fn set_left(&mut self, texture: Option<TextureResource>) -> Option<TextureResource> {
let prev = std::mem::replace(&mut self.left, texture);
Log::verify(self.create_cubemap());
prev
}
/// Returns a texture that is used for left face of the cube map.
///
/// # Important notes.
///
/// This textures is not used for rendering! The renderer uses cube map made of face textures.
pub fn left(&self) -> Option<TextureResource> {
self.left.clone()
}
/// Set new texture for the right side of the skybox.
pub fn set_right(&mut self, texture: Option<TextureResource>) -> Option<TextureResource> {
let prev = std::mem::replace(&mut self.right, texture);
Log::verify(self.create_cubemap());
prev
}
/// Returns a texture that is used for right face of the cube map.
///
/// # Important notes.
///
/// This textures is not used for rendering! The renderer uses cube map made of face textures.
pub fn right(&self) -> Option<TextureResource> {
self.right.clone()
}
/// Set new texture for the top side of the skybox.
pub fn set_top(&mut self, texture: Option<TextureResource>) -> Option<TextureResource> {
let prev = std::mem::replace(&mut self.top, texture);
Log::verify(self.create_cubemap());
prev
}
/// Returns a texture that is used for top face of the cube map.
///
/// # Important notes.
///
/// This textures is not used for rendering! The renderer uses cube map made of face textures.
pub fn top(&self) -> Option<TextureResource> {
self.top.clone()
}
/// Set new texture for the bottom side of the skybox.
pub fn set_bottom(&mut self, texture: Option<TextureResource>) -> Option<TextureResource> {
let prev = std::mem::replace(&mut self.bottom, texture);
Log::verify(self.create_cubemap());
prev
}
/// Returns a texture that is used for bottom face of the cube map.
///
/// # Important notes.
///
/// This textures is not used for rendering! The renderer uses cube map made of face textures.
pub fn bottom(&self) -> Option<TextureResource> {
self.bottom.clone()
}
/// Set new texture for the front side of the skybox.
pub fn set_front(&mut self, texture: Option<TextureResource>) -> Option<TextureResource> {
let prev = std::mem::replace(&mut self.front, texture);
Log::verify(self.create_cubemap());
prev
}
/// Returns a texture that is used for front face of the cube map.
///
/// # Important notes.
///
/// This textures is not used for rendering! The renderer uses cube map made of face textures.
pub fn front(&self) -> Option<TextureResource> {
self.front.clone()
}
/// Set new texture for the back side of the skybox.
pub fn set_back(&mut self, texture: Option<TextureResource>) -> Option<TextureResource> {
let prev = std::mem::replace(&mut self.back, texture);
Log::verify(self.create_cubemap());
prev
}
/// Returns a texture that is used for back face of the cube map.
///
/// # Important notes.
///
/// This textures is not used for rendering! The renderer uses cube map made of face textures.
pub fn back(&self) -> Option<TextureResource> {
self.back.clone()
}
}