fyrox_impl/utils/
navmesh.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
//! Contains all structures and methods to create and manage navigation meshes (navmesh).
//!
//! Navigation mesh is a set of convex polygons which is used for path finding in complex
//! environment.

#![warn(missing_docs)]

use crate::{
    core::{
        algebra::{Point3, Vector3},
        arrayvec::ArrayVec,
        math::{self, plane::Plane, ray::Ray, PositionProvider, TriangleDefinition, Vector3Ext},
        reflect::prelude::*,
        visitor::{Visit, VisitResult, Visitor},
    },
    scene::mesh::{
        buffer::{VertexAttributeUsage, VertexReadTrait},
        Mesh,
    },
    utils::{
        astar::{Graph, GraphVertex, PathError, PathKind, VertexData, VertexDataProvider},
        raw_mesh::{RawMeshBuilder, RawVertex},
    },
};
use fxhash::{FxBuildHasher, FxHashMap};
use fyrox_core::math::octree::{Octree, OctreeNode};
use std::ops::{Deref, DerefMut};

#[derive(Clone, Debug, Default, Visit)]
struct Vertex {
    triangle_index: usize,
    data: VertexData,
}

impl Deref for Vertex {
    type Target = VertexData;

    fn deref(&self) -> &Self::Target {
        &self.data
    }
}

impl DerefMut for Vertex {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.data
    }
}

impl PositionProvider for Vertex {
    fn position(&self) -> Vector3<f32> {
        self.data.position
    }
}

impl VertexDataProvider for Vertex {}

/// See module docs.
#[derive(Clone, Debug, Default, Reflect)]
#[reflect(hide_all)]
pub struct Navmesh {
    octree: Octree,
    triangles: Vec<TriangleDefinition>,
    vertices: Vec<Vector3<f32>>,
    graph: Graph<Vertex>,
}

impl PartialEq for Navmesh {
    fn eq(&self, other: &Self) -> bool {
        self.triangles == other.triangles && self.vertices == other.vertices
    }
}

impl Visit for Navmesh {
    fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
        let mut region = visitor.enter_region(name)?;

        // Backward compatibility.
        if region.is_reading() {
            let mut pathfinder = Graph::<GraphVertex>::new();
            if pathfinder.visit("PathFinder", &mut region).is_ok() {
                self.vertices = pathfinder
                    .vertices
                    .iter()
                    .map(|v| v.position)
                    .collect::<Vec<_>>();
            } else {
                self.vertices.visit("Vertices", &mut region)?;
            }
        } else {
            self.vertices.visit("Vertices", &mut region)?;
        }

        self.triangles.visit("Triangles", &mut region)?;

        drop(region);

        // No need to save octree, we can restore it on load.
        if visitor.is_reading() {
            let raw_triangles = self
                .triangles
                .iter()
                .map(|t| {
                    [
                        self.vertices[t[0] as usize],
                        self.vertices[t[1] as usize],
                        self.vertices[t[2] as usize],
                    ]
                })
                .collect::<Vec<[Vector3<f32>; 3]>>();

            self.octree = Octree::new(&raw_triangles, 32);
        }

        let graph = make_graph(&self.triangles, &self.vertices);
        self.graph = graph;

        Ok(())
    }
}

#[derive(Copy, Clone, Debug)]
struct Portal {
    left: usize,
    right: usize,
}

fn triangle_area_2d(a: Vector3<f32>, b: Vector3<f32>, c: Vector3<f32>) -> f32 {
    let abx = b[0] - a[0];
    let abz = b[2] - a[2];
    let acx = c[0] - a[0];
    let acz = c[2] - a[2];
    acx * abz - abx * acz
}

#[derive(PartialEq, Clone, Copy, Eq)]
enum Winding {
    Clockwise,
    CounterClockwise,
}

fn winding(a: Vector3<f32>, b: Vector3<f32>, c: Vector3<f32>) -> Winding {
    if triangle_area_2d(a, b, c) > 0.0 {
        Winding::Clockwise
    } else {
        Winding::CounterClockwise
    }
}

fn make_graph(triangles: &[TriangleDefinition], vertices: &[Vector3<f32>]) -> Graph<Vertex> {
    let mut graph = Graph::new();

    // Add vertices at the center of each triangle.
    for (triangle_index, triangle) in triangles.iter().enumerate() {
        let a = vertices[triangle[0] as usize];
        let b = vertices[triangle[1] as usize];
        let c = vertices[triangle[2] as usize];

        let center = (a + b + c).scale(1.0 / 3.0);
        graph.add_vertex(Vertex {
            triangle_index,
            data: VertexData::new(center),
        });
    }

    // Build edge-triangle map first.
    #[derive(Copy, Clone, PartialEq, Hash, Eq)]
    struct Edge {
        a: usize,
        b: usize,
    }

    let total_edge_count = triangles.len() * 3;
    let mut edge_triangle_map =
        FxHashMap::with_capacity_and_hasher(total_edge_count, FxBuildHasher::default());

    for (triangle_index, triangle) in triangles.iter().enumerate() {
        for edge in triangle.edges() {
            edge_triangle_map.insert(
                Edge {
                    a: edge.a as usize,
                    b: edge.b as usize,
                },
                triangle_index,
            );
        }
    }

    // Link vertices.
    for (triangle_index, triangle) in triangles.iter().enumerate() {
        for edge in triangle.edges() {
            // Adjacent edge must have opposite winding.
            let adjacent_edge = Edge {
                a: edge.b as usize,
                b: edge.a as usize,
            };

            if let Some(adjacent_triangle_index) = edge_triangle_map.get(&adjacent_edge) {
                graph.link_bidirect(triangle_index, *adjacent_triangle_index);
            }
        }
    }

    graph
}

/// A temporary modification context which allows you to modify a navmesh. When the modification
/// context is dropped, it recalculates navigation graph automatically.
pub struct NavmeshModificationContext<'a> {
    navmesh: &'a mut Navmesh,
}

impl<'a> Drop for NavmeshModificationContext<'a> {
    fn drop(&mut self) {
        let graph = make_graph(&self.navmesh.triangles, &self.navmesh.vertices);
        self.navmesh.graph = graph;
    }
}

impl<'a> NavmeshModificationContext<'a> {
    /// Adds the triangle to the navigational mesh and returns its index in the internal array. Vertex indices in
    /// the triangle must be valid!
    pub fn add_triangle(&mut self, triangle: TriangleDefinition) -> u32 {
        let index = self.navmesh.triangles.len();
        self.navmesh.triangles.push(triangle);
        index as u32
    }

    /// Removes a triangle at the given index from the navigational mesh.
    pub fn remove_triangle(&mut self, index: usize) -> TriangleDefinition {
        self.navmesh.triangles.remove(index)
    }

    /// Removes last triangle from the navigational mesh. Automatically fixes vertex links in the internal
    /// navigational graph.
    pub fn pop_triangle(&mut self) -> Option<TriangleDefinition> {
        if self.navmesh.triangles.is_empty() {
            None
        } else {
            Some(self.remove_triangle(self.navmesh.triangles.len() - 1))
        }
    }

    /// Removes a vertex at the given index from the navigational mesh. All triangles that share the vertex will
    /// be also removed.
    pub fn remove_vertex(&mut self, index: usize) -> Vector3<f32> {
        // Remove triangles that sharing the vertex first.
        let mut i = 0;
        while i < self.navmesh.triangles.len() {
            if self.navmesh.triangles[i]
                .indices()
                .contains(&(index as u32))
            {
                self.remove_triangle(i);
            } else {
                i += 1;
            }
        }

        // Shift vertex indices in triangles. Example:
        //
        // 0:A 1:B 2:C 3:D 4:E
        // [A,B,C], [A,C,D], [A,D,E], [D,C,E]
        // [0,1,2], [0,2,3], [0,3,4], [3,2,4]
        //
        // Remove B.
        //
        // 0:A 1:C 2:D 3:E
        // [A,C,D], [A,D,E], [D,C,E]
        // [0,1,2], [0,2,3], [2,1,3]
        for triangle in self.navmesh.triangles.iter_mut() {
            for other_vertex_index in triangle.indices_mut() {
                if *other_vertex_index > index as u32 {
                    *other_vertex_index -= 1;
                }
            }
        }

        self.navmesh.vertices.remove(index)
    }

    /// Returns a mutable reference to the internal array of vertices.
    pub fn vertices_mut(&mut self) -> &mut [Vector3<f32>] {
        &mut self.navmesh.vertices
    }

    /// Adds the vertex to the navigational mesh. The vertex will **not** be connected with any other vertex.
    pub fn add_vertex(&mut self, vertex: Vector3<f32>) -> u32 {
        let index = self.navmesh.vertices.len();
        self.navmesh.vertices.push(vertex);
        index as u32
    }

    /// Removes last vertex from the navigational mesh. All triangles that share the vertex will be also removed.
    pub fn pop_vertex(&mut self) -> Option<Vector3<f32>> {
        if self.navmesh.vertices.is_empty() {
            None
        } else {
            Some(self.remove_vertex(self.navmesh.vertices.len() - 1))
        }
    }

    /// Inserts the vertex at the given index. Automatically shift indices in triangles to preserve mesh structure.
    pub fn insert_vertex(&mut self, index: u32, vertex: Vector3<f32>) {
        self.navmesh.vertices.insert(index as usize, vertex);

        // Shift vertex indices in triangles. Example:
        //
        // 0:A 1:C 2:D 3:E
        // [A,C,D], [A,D,E], [D,C,E]
        // [0,1,2], [0,2,3], [2,1,3]
        //
        // Insert B.
        //
        // 0:A 1:B 2:C 3:D 4:E
        // [A,C,D], [A,D,E], [D,C,E]
        // [0,2,3], [0,3,4], [3,2,4]
        for triangle in self.navmesh.triangles.iter_mut() {
            for other_vertex_index in triangle.indices_mut() {
                if *other_vertex_index >= index {
                    *other_vertex_index += 1;
                }
            }
        }
    }
}

impl Navmesh {
    /// Creates new navigation mesh from given set of triangles and vertices. This is
    /// low level method that allows to specify triangles and vertices directly. In
    /// most cases you should use `from_mesh` method.
    pub fn new(triangles: Vec<TriangleDefinition>, vertices: Vec<Vector3<f32>>) -> Self {
        // Build triangles for octree.
        let raw_triangles = triangles
            .iter()
            .map(|t| {
                [
                    vertices[t[0] as usize],
                    vertices[t[1] as usize],
                    vertices[t[2] as usize],
                ]
            })
            .collect::<Vec<[Vector3<f32>; 3]>>();

        Self {
            graph: make_graph(&triangles, &vertices),
            triangles,
            vertices,
            octree: Octree::new(&raw_triangles, 32),
        }
    }

    /// Creates new navigation mesh (navmesh) from given mesh. It is most simple way to create complex
    /// navigation mesh, it should be used in pair with model loading functionality - you can
    /// load model from file and turn it into navigation mesh, or even build navigation mesh
    /// from a model in existing scene. This method "eats" any kind of meshes with any amount
    /// of surfaces - it joins all surfaces into single mesh and creates navmesh from it.
    ///
    /// Example:
    /// ```
    /// # use fyrox_impl::scene::Scene;
    /// # use fyrox_impl::utils::navmesh::Navmesh;
    /// # use fyrox_graph::SceneGraph;
    /// #
    /// fn make_navmesh(scene: &Scene, navmesh_name: &str) -> Navmesh {
    ///     // Find mesh node in existing scene and create navigation mesh from it.
    ///     let navmesh_node_handle = scene.graph.find_by_name_from_root(navmesh_name).unwrap().0;
    ///     Navmesh::from_mesh(scene.graph[navmesh_node_handle].as_mesh())
    /// }
    /// ```
    pub fn from_mesh(mesh: &Mesh) -> Self {
        // Join surfaces into one simple mesh.
        let mut builder = RawMeshBuilder::<RawVertex>::default();
        let global_transform = mesh.global_transform();
        for surface in mesh.surfaces() {
            let shared_data = surface.data();
            let shared_data = shared_data.lock();

            let vertex_buffer = &shared_data.vertex_buffer;
            for triangle in shared_data.geometry_buffer.iter() {
                builder.insert(RawVertex::from(
                    global_transform
                        .transform_point(&Point3::from(
                            vertex_buffer
                                .get(triangle[0] as usize)
                                .unwrap()
                                .read_3_f32(VertexAttributeUsage::Position)
                                .unwrap(),
                        ))
                        .coords,
                ));
                builder.insert(RawVertex::from(
                    global_transform
                        .transform_point(&Point3::from(
                            vertex_buffer
                                .get(triangle[1] as usize)
                                .unwrap()
                                .read_3_f32(VertexAttributeUsage::Position)
                                .unwrap(),
                        ))
                        .coords,
                ));
                builder.insert(RawVertex::from(
                    global_transform
                        .transform_point(&Point3::from(
                            vertex_buffer
                                .get(triangle[2] as usize)
                                .unwrap()
                                .read_3_f32(VertexAttributeUsage::Position)
                                .unwrap(),
                        ))
                        .coords,
                ));
            }
        }

        let mesh = builder.build();

        Navmesh::new(
            mesh.triangles,
            mesh.vertices
                .into_iter()
                .map(|v| Vector3::new(v.x, v.y, v.z))
                .collect::<Vec<_>>(),
        )
    }

    /// Tries to get a projected point on the navmesh, that is closest to the given query point.
    /// Returns a tuple with the projection point and the triangle index, that contains this
    /// projection point.
    ///
    /// ## Complexity
    ///
    /// This method has `O(log(n))` complexity in the best case (when the query point lies inside the
    /// navmesh bounds) and `O(n)` complexity in the worst case. `n` here is the number of triangles
    /// in the navmesh.
    pub fn query_closest(&self, query_point: Vector3<f32>) -> Option<(Vector3<f32>, usize)> {
        let mut closest = None;
        let mut closest_distance = f32::MAX;

        /* TODO: Octree query seems to be bugged and needs investigation.
        self.octree.point_query(query_point, |triangles| {
            // O(log(n))
            self.query_closest_internal(
                &mut closest,
                &mut closest_distance,
                triangles.iter().map(|i| *i as usize),
                query_point,
            )
        });

        if closest.is_none() {
            self.query_closest_internal(
                &mut closest,
                &mut closest_distance,
                0..self.triangles.len(),
                query_point,
            )
        }*/

        // O(n)
        self.query_closest_internal(
            &mut closest,
            &mut closest_distance,
            0..self.triangles.len(),
            query_point,
        );

        closest
    }

    fn query_closest_internal(
        &self,
        closest: &mut Option<(Vector3<f32>, usize)>,
        closest_distance: &mut f32,
        triangles: impl Iterator<Item = usize>,
        query_point: Vector3<f32>,
    ) {
        for triangle_index in triangles {
            let triangle = &self.triangles[triangle_index];
            let a = self.vertices[triangle[0] as usize];
            let b = self.vertices[triangle[1] as usize];
            let c = self.vertices[triangle[2] as usize];

            let Some(plane) = Plane::from_triangle(&a, &b, &c) else {
                continue;
            };
            let projection = plane.project(&query_point);
            if math::is_point_inside_triangle(&projection, &[a, b, c]) {
                let sqr_distance = query_point.sqr_distance(&projection);
                if sqr_distance < *closest_distance {
                    *closest_distance = sqr_distance;
                    *closest = Some((projection, triangle_index));
                }
            }

            // Check each edge by projecting the query point onto it and checking where the
            // projection lies.
            for edge in self.triangles[triangle_index].edges() {
                let a = self.vertices[edge.a as usize];
                let b = self.vertices[edge.b as usize];
                let ray = Ray::from_two_points(a, b);
                let t = ray.project_point(&query_point);
                if (0.0..=1.0).contains(&t) {
                    let edge_pt_projection = ray.get_point(t);
                    let sqr_distance = query_point.sqr_distance(&edge_pt_projection);
                    if sqr_distance < *closest_distance {
                        *closest_distance = sqr_distance;
                        *closest = Some((ray.get_point(t), triangle_index));
                    }
                }
            }

            // Also check vertices.
            for pt in [a, b, c] {
                let sqr_distance = query_point.sqr_distance(&pt);
                if sqr_distance < *closest_distance {
                    *closest_distance = sqr_distance;
                    *closest = Some((pt, triangle_index));
                }
            }
        }
    }

    /// Creates a temporary modification context which allows you to modify the navmesh. When the
    /// modification context is dropped, it recalculates navigation graph automatically.
    pub fn modify(&mut self) -> NavmeshModificationContext {
        NavmeshModificationContext { navmesh: self }
    }

    /// Returns reference to array of triangles.
    pub fn triangles(&self) -> &[TriangleDefinition] {
        &self.triangles
    }

    /// Returns reference to the internal array of vertices.
    pub fn vertices(&self) -> &[Vector3<f32>] {
        &self.vertices
    }

    /// Returns shared reference to inner octree.
    pub fn octree(&self) -> &Octree {
        &self.octree
    }

    /// Tries to build path using indices of begin and end points.
    ///
    /// Example:
    ///
    /// ```
    /// use fyrox_impl::utils::navmesh::Navmesh;
    /// use fyrox_impl::core::algebra::Vector3;
    /// use fyrox_impl::utils::astar::{PathKind, PathError};
    ///
    /// fn find_path(navmesh: &Navmesh, begin: Vector3<f32>, end: Vector3<f32>, path: &mut Vec<Vector3<f32>>) -> Result<PathKind, PathError> {
    ///     if let Some((_, begin_index)) = navmesh.query_closest(begin) {
    ///         if let Some((_, end_index)) = navmesh.query_closest(end) {
    ///             return navmesh.build_path(begin_index, end_index, path);
    ///         }
    ///     }
    ///     Ok(PathKind::Partial)
    /// }
    /// ```
    pub fn build_path(
        &self,
        from: usize,
        to: usize,
        path: &mut Vec<Vector3<f32>>,
    ) -> Result<PathKind, PathError> {
        self.graph.build_positional_path(from, to, path)
    }

    /// Tries to pick a triangle by given ray. Returns closest result.
    pub fn ray_cast(&self, ray: Ray) -> Option<(Vector3<f32>, usize)> {
        let mut buffer = ArrayVec::<usize, 128>::new();

        self.octree.ray_query_static(&ray, &mut buffer);

        let mut closest_distance = f32::MAX;
        let mut result = None;
        for node in buffer.into_iter() {
            if let OctreeNode::Leaf { indices, .. } = self.octree.node(node) {
                for &index in indices {
                    let triangle = self.triangles[index as usize];
                    let a = self.vertices()[triangle[0] as usize];
                    let b = self.vertices()[triangle[1] as usize];
                    let c = self.vertices()[triangle[2] as usize];

                    if let Some(intersection) = ray.triangle_intersection_point(&[a, b, c]) {
                        let distance = intersection.metric_distance(&ray.origin);
                        if distance < closest_distance {
                            closest_distance = distance;
                            result = Some((intersection, index as usize));
                        }
                    }
                }
            } else {
                unreachable!()
            }
        }

        result
    }

    fn portal_between(&self, src_triangle: usize, dest_triangle: usize) -> Option<Portal> {
        let src_triangle = self.triangles.get(src_triangle)?;
        let dest_triangle = self.triangles.get(dest_triangle)?;
        for src_triangle_edge in src_triangle.edges() {
            for dest_triangle_edge in dest_triangle.edges() {
                if src_triangle_edge == dest_triangle_edge {
                    let a = self.vertices[src_triangle[0] as usize];
                    let b = self.vertices[src_triangle[1] as usize];
                    let c = self.vertices[src_triangle[2] as usize];

                    return if winding(a, b, c) == Winding::Clockwise {
                        Some(Portal {
                            left: src_triangle_edge.a as usize,
                            right: src_triangle_edge.b as usize,
                        })
                    } else {
                        Some(Portal {
                            left: src_triangle_edge.b as usize,
                            right: src_triangle_edge.a as usize,
                        })
                    };
                }
            }
        }
        None
    }
}

/// Navmesh agent is a "pathfinding unit" that performs navigation on a mesh. It is designed to
/// cover most of simple use cases when you need to build and follow some path from point A to point B.
#[derive(Visit, Clone, Debug)]
#[visit(optional)]
pub struct NavmeshAgent {
    path: Vec<Vector3<f32>>,
    current: u32,
    position: Vector3<f32>,
    last_warp_position: Vector3<f32>,
    target: Vector3<f32>,
    last_target_position: Vector3<f32>,
    recalculation_threshold: f32,
    speed: f32,
    path_dirty: bool,
    radius: f32,
    interpolator: f32,
}

impl Default for NavmeshAgent {
    fn default() -> Self {
        Self::new()
    }
}

impl NavmeshAgent {
    /// Creates new navigation mesh agent.
    pub fn new() -> Self {
        Self {
            path: vec![],
            current: 0,
            position: Default::default(),
            last_warp_position: Default::default(),
            target: Default::default(),
            last_target_position: Default::default(),
            recalculation_threshold: 0.25,
            speed: 1.5,
            path_dirty: true,
            radius: 0.2,
            interpolator: 0.0,
        }
    }

    /// Returns agent's position.
    pub fn position(&self) -> Vector3<f32> {
        self.position
    }

    /// Returns agent's path that will be followed.
    pub fn path(&self) -> &[Vector3<f32>] {
        &self.path
    }

    /// Sets new speed of agent's movement.
    pub fn set_speed(&mut self, speed: f32) {
        self.speed = speed;
    }

    /// Returns current agent's movement speed.
    pub fn speed(&self) -> f32 {
        self.speed
    }

    /// Sets a new path recalculation threshold (in meters). The threshold is used to prevent
    /// path recalculation in case if a target's position or the agent position haven't significantly
    /// moved. This significance is defined by the threshold.
    pub fn set_threshold(&mut self, threshold: f32) {
        self.recalculation_threshold = threshold;
    }

    /// Returns the current path recalculation threshold (in meters). See [`Self::set_threshold`]
    /// for more info.
    pub fn threshold(&self) -> f32 {
        self.recalculation_threshold
    }

    /// Sets a new radius for the navmesh agent. The agent will use this radius to walk around
    /// corners with the distance equal to the radius. This could help to prevent the agent from
    /// being stuck in the corners. The default value is 0.2 meters.
    pub fn set_radius(&mut self, radius: f32) {
        self.radius = radius;
    }

    /// Returns the current radius of the navmesh agent. See [`Self::set_radius`] for more info
    /// about radius parameter.
    pub fn radius(&self) -> f32 {
        self.radius
    }
}

impl NavmeshAgent {
    /// Calculates path from point A to point B. In most cases there is no need to use this method
    /// directly, because `update` will call it anyway if target position has moved.
    pub fn calculate_path(
        &mut self,
        navmesh: &Navmesh,
        src_point: Vector3<f32>,
        dest_point: Vector3<f32>,
    ) -> Result<PathKind, PathError> {
        self.path.clear();

        self.current = 0;
        self.interpolator = 0.0;

        if let Some((src_point_on_navmesh, src_triangle)) = navmesh.query_closest(src_point) {
            if let Some((dest_point_on_navmesh, dest_triangle)) = navmesh.query_closest(dest_point)
            {
                if src_triangle == dest_triangle {
                    self.path.push(src_point_on_navmesh);
                    self.path.push(dest_point_on_navmesh);

                    return Ok(PathKind::Full);
                }

                let mut path_triangle_indices = Vec::new();
                let path_kind = navmesh.graph.build_indexed_path(
                    src_triangle,
                    dest_triangle,
                    &mut path_triangle_indices,
                )?;

                path_triangle_indices.reverse();

                self.straighten_path(
                    navmesh,
                    src_point_on_navmesh,
                    dest_point_on_navmesh,
                    &path_triangle_indices,
                );

                return Ok(path_kind);
            }
        }

        Err(PathError::Empty)
    }

    fn straighten_path(
        &mut self,
        navmesh: &Navmesh,
        src_position: Vector3<f32>,
        dest_position: Vector3<f32>,
        path_triangles: &[usize],
    ) {
        self.path.push(src_position);

        if path_triangles.len() > 1 {
            let mut funnel_apex = src_position;
            let mut funnel_vertices = [funnel_apex; 2];
            let mut side_indices = [0; 2];
            let side_signs = [1.0, -1.0];

            let mut i = 0;
            while i < path_triangles.len() {
                let portal_vertices = if i + 1 < path_triangles.len() {
                    let portal = navmesh
                        .portal_between(path_triangles[i], path_triangles[i + 1])
                        .unwrap();

                    let mut left = navmesh.vertices[portal.left];
                    let mut right = navmesh.vertices[portal.right];

                    if self.radius > 0.0 {
                        let delta = right - left;
                        let len = delta.norm();
                        let offset = delta.scale(self.radius.min(len * 0.5) / len);

                        left += offset;
                        right -= offset;
                    }

                    [left, right]
                } else {
                    [dest_position, dest_position]
                };

                for current in 0..2 {
                    let opposite = 1 - current;
                    let side_sign = side_signs[current];
                    if side_sign
                        * triangle_area_2d(
                            funnel_apex,
                            funnel_vertices[current],
                            portal_vertices[current],
                        )
                        >= 0.0
                    {
                        if funnel_apex == funnel_vertices[current]
                            || side_sign
                                * triangle_area_2d(
                                    funnel_apex,
                                    funnel_vertices[opposite],
                                    portal_vertices[current],
                                )
                                < 0.0
                        {
                            funnel_vertices[current] = portal_vertices[current];
                            side_indices[current] = i;
                        } else {
                            funnel_apex = funnel_vertices[opposite];
                            funnel_vertices = [funnel_apex; 2];

                            self.path.push(funnel_apex);

                            i = side_indices[opposite];
                            side_indices[current] = i;

                            break;
                        }
                    }
                }

                i += 1;
            }
        }

        self.path.push(dest_position);
    }

    /// Performs single update tick that moves agent to the target along the path (which is automatically
    /// recalculated if target's position has changed).
    pub fn update(&mut self, dt: f32, navmesh: &Navmesh) -> Result<PathKind, PathError> {
        if self.path_dirty {
            self.calculate_path(navmesh, self.position, self.target)?;
            self.path_dirty = false;
        }

        if let Some(source) = self.path.get(self.current as usize) {
            if let Some(destination) = self.path.get((self.current + 1) as usize) {
                let len = destination.metric_distance(source);
                self.position = source.lerp(destination, self.interpolator.clamp(0.0, 1.0));
                self.interpolator += (self.speed * dt) / len.max(f32::EPSILON);
                if self.interpolator >= 1.0 {
                    self.current += 1;
                    self.interpolator = 0.0;
                } else if self.interpolator < 0.0 {
                    self.current = self.current.saturating_sub(1);
                    self.interpolator = 1.0;
                }
            }
        }

        Ok(PathKind::Full)
    }

    /// Returns current steering target which in most cases next path point from which
    /// agent is close to.
    pub fn steering_target(&self) -> Option<Vector3<f32>> {
        self.path
            .get(self.current as usize + 1)
            .or_else(|| self.path.last())
            .cloned()
    }

    /// Sets new target for the agent.
    pub fn set_target(&mut self, new_target: Vector3<f32>) {
        if new_target.metric_distance(&self.last_target_position) >= self.recalculation_threshold {
            self.path_dirty = true;
            self.last_target_position = new_target;
        }

        self.target = new_target;
    }

    /// Returns current target of the agent.
    pub fn target(&self) -> Vector3<f32> {
        self.target
    }

    /// Sets new position of the agent.
    pub fn set_position(&mut self, new_position: Vector3<f32>) {
        if new_position.metric_distance(&self.last_warp_position) >= self.recalculation_threshold {
            self.path_dirty = true;
            self.last_warp_position = new_position;
        }

        self.position = new_position;
    }
}

/// Allows you to build agent in declarative manner.
pub struct NavmeshAgentBuilder {
    position: Vector3<f32>,
    target: Vector3<f32>,
    recalculation_threshold: f32,
    speed: f32,
}

impl Default for NavmeshAgentBuilder {
    fn default() -> Self {
        Self::new()
    }
}

impl NavmeshAgentBuilder {
    /// Creates new builder instance.
    pub fn new() -> Self {
        Self {
            position: Default::default(),
            target: Default::default(),
            recalculation_threshold: 0.25,
            speed: 1.5,
        }
    }

    /// Sets new desired position of the agent being built.
    pub fn with_position(mut self, position: Vector3<f32>) -> Self {
        self.position = position;
        self
    }

    /// Sets new desired target of the agent being built.
    pub fn with_target(mut self, position: Vector3<f32>) -> Self {
        self.target = position;
        self
    }

    /// Sets new desired recalculation threshold (in meters) of the agent being built.
    pub fn with_recalculation_threshold(mut self, threshold: f32) -> Self {
        self.recalculation_threshold = threshold;
        self
    }

    /// Sets new desired movement speed of the agent being built.
    pub fn with_speed(mut self, speed: f32) -> Self {
        self.speed = speed;
        self
    }

    /// Build the agent.
    pub fn build(self) -> NavmeshAgent {
        NavmeshAgent {
            position: self.position,
            last_warp_position: self.position,
            target: self.target,
            last_target_position: self.target,
            recalculation_threshold: self.recalculation_threshold,
            speed: self.speed,
            ..Default::default()
        }
    }
}

#[cfg(test)]
mod test {
    use crate::{
        core::{algebra::Vector3, math::TriangleDefinition},
        utils::navmesh::{Navmesh, NavmeshAgent},
    };

    #[test]
    fn test_navmesh() {
        let navmesh = Navmesh::new(
            vec![
                TriangleDefinition([0, 1, 3]),
                TriangleDefinition([1, 2, 3]),
                TriangleDefinition([2, 5, 3]),
                TriangleDefinition([2, 4, 5]),
                TriangleDefinition([4, 7, 5]),
                TriangleDefinition([4, 6, 7]),
            ],
            vec![
                Vector3::new(0.0, 0.0, 0.0),
                Vector3::new(0.0, 0.0, 1.0),
                Vector3::new(1.0, 0.0, 1.0),
                Vector3::new(1.0, 0.0, 0.0),
                Vector3::new(2.0, 0.0, 1.0),
                Vector3::new(2.0, 0.0, 0.0),
                Vector3::new(3.0, 0.0, 1.0),
                Vector3::new(3.0, 0.0, 0.0),
            ],
        );

        let mut agent = NavmeshAgent::new();

        agent.set_target(Vector3::new(3.0, 0.0, 1.0));
        agent.update(1.0 / 60.0, &navmesh).unwrap();

        let graph = &navmesh.graph;

        assert_eq!(graph.vertices.len(), 6);
        assert_eq!(graph.vertices[0].neighbours[0], 1);

        assert_eq!(graph.vertices[1].neighbours[0], 0);
        assert_eq!(graph.vertices[1].neighbours[1], 2);

        assert_eq!(graph.vertices[2].neighbours[0], 1);
        assert_eq!(graph.vertices[2].neighbours[1], 3);

        assert_eq!(graph.vertices[3].neighbours[0], 2);
        assert_eq!(graph.vertices[3].neighbours[1], 4);

        assert_eq!(graph.vertices[4].neighbours[0], 3);
        assert_eq!(graph.vertices[4].neighbours[1], 5);

        assert_eq!(graph.vertices[5].neighbours[0], 4);

        assert_eq!(
            agent.path,
            vec![
                Vector3::new(0.0, 0.0, 0.0),
                Vector3::new(3.0, 0.0, 1.0),
                Vector3::new(3.0, 0.0, 1.0)
            ]
        );
    }
}