fyrox_impl/utils/astar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
//! Contains classic A* (A-star) path finding algorithms.
//!
//! A* is one of fastest graph search algorithms, it is used to construct shortest
//! possible path from vertex to vertex. In vast majority of games it is used in pair
//! with navigation meshes (navmesh). Check navmesh module docs for more info.
#![warn(missing_docs)]
use crate::core::{
algebra::Vector3,
math::{self, PositionProvider},
visitor::prelude::*,
};
use std::{
cmp::Ordering,
collections::BinaryHeap,
fmt::{Display, Formatter},
ops::{Deref, DerefMut},
};
/// Graph vertex that contains position in world and list of indices of neighbour
/// vertices.
#[derive(Clone, Debug, Visit, PartialEq)]
pub struct VertexData {
/// Position in the world coordinates
pub position: Vector3<f32>,
/// A set of indices of neighbour vertices.
pub neighbours: Vec<u32>,
/// Penalty can be interpreted as measure, how harder is to travel to this vertex.
#[visit(skip)]
pub g_penalty: f32,
}
impl Default for VertexData {
fn default() -> Self {
Self {
position: Default::default(),
g_penalty: 1f32,
neighbours: Default::default(),
}
}
}
impl VertexData {
/// Creates new vertex at given position.
pub fn new(position: Vector3<f32>) -> Self {
Self {
position,
g_penalty: 1f32,
neighbours: Default::default(),
}
}
}
/// A trait, that describes and arbitrary vertex that could be used in a graph. It allows you to
/// use your structure to store additional info in the graph.
pub trait VertexDataProvider: Deref<Target = VertexData> + DerefMut + PositionProvider {}
/// A default graph vertex with no additional data.
#[derive(Default, PartialEq, Debug)]
pub struct GraphVertex {
/// Data of the vertex.
pub data: VertexData,
}
impl GraphVertex {
/// Creates a new graph vertex.
pub fn new(position: Vector3<f32>) -> Self {
Self {
data: VertexData::new(position),
}
}
}
impl Deref for GraphVertex {
type Target = VertexData;
fn deref(&self) -> &Self::Target {
&self.data
}
}
impl DerefMut for GraphVertex {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.data
}
}
impl PositionProvider for GraphVertex {
fn position(&self) -> Vector3<f32> {
self.data.position
}
}
impl Visit for GraphVertex {
fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
self.data.visit(name, visitor)
}
}
impl VertexDataProvider for GraphVertex {}
/// A collection of GraphVertices for pathfinding.
///
/// See module docs
#[derive(Clone, Debug, Visit, PartialEq)]
pub struct Graph<T>
where
T: VertexDataProvider,
{
/// Vertices of the graph.
pub vertices: Vec<T>,
/// The maximum iterations A* pathfinding will attempt before giving up and returning its best path.
///
/// **Default:** 1000
///
/// # Notes
///
/// A* is inefficient when its desired destination is isolated or it must backtrack a substantial distance before it may reach the goal.
/// Higher max iteration numbers will be required for huge graphs and graphs with many obstacles.
/// Whereas, lower max iterations may be desired for smaller simple graphs.
///
/// **Negative numbers** disable max iterations
pub max_search_iterations: i32,
}
/// Shows path status.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum PathKind {
/// The path is a direct path from beginning to end.
Full,
/// The path is not a direct path from beginning to end.
/// Instead, it is a partial path ending at the closest reachable vertex to the desired destination.
///
/// # Notes
///
/// Can happen if there are isolated "islands" of graph vertices with no links between
/// them and you trying to find a path from one "island" to another.
Partial,
}
fn heuristic(a: Vector3<f32>, b: Vector3<f32>) -> f32 {
(a - b).norm_squared()
}
impl<T: VertexDataProvider> Default for Graph<T> {
fn default() -> Self {
Self::new()
}
}
impl PositionProvider for VertexData {
fn position(&self) -> Vector3<f32> {
self.position
}
}
/// Path search can be interrupted by errors, this enum stores all possible
/// kinds of errors.
#[derive(Clone, Debug)]
pub enum PathError {
/// Out-of-bounds vertex index was found, it can be either the index of begin/end
/// points, or some index of neighbour vertices in list of neighbours in vertex.
InvalidIndex(usize),
/// There is a vertex that has itself as neighbour.
CyclicReferenceFound(usize),
/// Path vector is still valid and partial, but pathfinder hit its maximum search iterations and gave up.
///
/// # Notes
///
/// This most often means the desired destination is isolated, but a full path may exist. If a full path does exist you can:
/// - increase or disable max search iterations for this graph (at the cost of time).
/// - use a pathfinding algorithm that is better in these situations.
///
/// See `Graph<T>.max_search_iterations` for more
HitMaxSearchIterations(i32),
/// Graph was empty.
Empty,
}
impl Display for PathError {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
PathError::InvalidIndex(v) => {
write!(f, "Invalid vertex index {v}.")
}
PathError::CyclicReferenceFound(v) => {
write!(f, "Cyclical reference was found {v}.")
}
PathError::HitMaxSearchIterations(v) => {
write!(
f,
"Maximum search iterations ({v}) hit, returning with partial path."
)
}
PathError::Empty => {
write!(f, "Graph was empty")
}
}
}
}
#[derive(Clone)]
/// A partially complete path containing the indices of graph vertices and its A* scores
pub struct PartialPath {
vertices: Vec<usize>,
g_score: f32,
f_score: f32,
}
impl Default for PartialPath {
fn default() -> Self {
Self {
vertices: Vec::new(),
g_score: f32::MAX,
f_score: f32::MAX,
}
}
}
impl Ord for PartialPath {
/// Only compairs f-value and heuristic
fn cmp(&self, other: &Self) -> Ordering {
(self.f_score.total_cmp(&other.f_score))
.then((self.f_score - self.g_score).total_cmp(&(other.f_score - other.g_score)))
.reverse()
}
}
impl PartialOrd for PartialPath {
/// Only compairs f-value and heuristic
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for PartialPath {
/// Only determaines if scores are equal, does not evaluate vertices
fn eq(&self, other: &Self) -> bool {
self.f_score == other.f_score && self.g_score == other.g_score
}
}
impl Eq for PartialPath {}
impl PartialPath {
/// Creates a new partial path from the starting vertex index
pub fn new(start: usize) -> Self {
Self {
vertices: vec![start],
g_score: 0f32,
f_score: f32::MAX,
}
}
/// Returns a clone with the new vertex added to the end and updates scores to given new scores
pub fn clone_and_add(
&self,
new_vertex: usize,
new_g_score: f32,
new_f_score: f32,
) -> PartialPath {
let mut clone = self.clone();
clone.vertices.push(new_vertex);
clone.g_score = new_g_score;
clone.f_score = new_f_score;
clone
}
}
impl<T: VertexDataProvider> Graph<T> {
/// Creates new empty graph.
pub fn new() -> Self {
Self {
vertices: Default::default(),
max_search_iterations: 1000i32,
}
}
/// Sets active set of vertices. Links between vertices must contain
/// valid indices (which are not out-of-bounds), otherwise path from/to
/// such vertices won't be built.
pub fn set_vertices(&mut self, vertices: Vec<T>) {
self.vertices = vertices;
}
/// Tries to find a vertex closest to given point.
///
/// # Notes
///
/// O(n) complexity.
pub fn get_closest_vertex_to(&self, point: Vector3<f32>) -> Option<usize> {
math::get_closest_point(&self.vertices, point)
}
/// Creates bidirectional link between two vertices. Bidirectional means
/// that point `a` can be reached from point `b` as well as point `b`
/// can be reached from point `a`.
pub fn link_bidirect(&mut self, a: usize, b: usize) {
self.link_unidirect(a, b);
self.link_unidirect(b, a);
}
/// Creates unidirectional link between vertex `a` and vertex `b`. Unidirectional
/// means that there is no direct link between `b` to `a`, only from `a` to `b`.
pub fn link_unidirect(&mut self, a: usize, b: usize) {
if let Some(vertex_a) = self.vertices.get_mut(a) {
if vertex_a.neighbours.iter().all(|n| *n != b as u32) {
vertex_a.neighbours.push(b as u32);
}
}
}
/// Returns shared reference to a path vertex at the given index.
pub fn vertex(&self, index: usize) -> Option<&T> {
self.vertices.get(index)
}
/// Returns mutable reference to a path vertex at the given index.
pub fn vertex_mut(&mut self, index: usize) -> Option<&mut T> {
self.vertices.get_mut(index)
}
/// Returns reference to the array of vertices.
pub fn vertices(&self) -> &[T] {
&self.vertices
}
/// Returns mutable reference to the array of vertices.
pub fn vertices_mut(&mut self) -> &mut [T] {
&mut self.vertices
}
/// Adds a new vertex to the path finder.
pub fn add_vertex(&mut self, vertex: T) -> u32 {
let index = self.vertices.len();
// Since we're adding the vertex to the end of the array, we don't need to
// shift indices of neighbours (like `insert_vertex`)
self.vertices.push(vertex);
index as u32
}
/// Removes last vertex from the graph. Automatically cleans "dangling" references to the deleted vertex
/// from every other vertex in the graph and shifts indices of neighbour vertices, to preserve graph
/// structure.
pub fn pop_vertex(&mut self) -> Option<T> {
if self.vertices.is_empty() {
None
} else {
Some(self.remove_vertex(self.vertices.len() - 1))
}
}
/// Removes a vertex at the given index from the graph. Automatically cleans "dangling" references to the
/// deleted vertex from every other vertex in the graph and shifts indices of neighbour vertices, to
/// preserve graph structure.
pub fn remove_vertex(&mut self, index: usize) -> T {
for other_vertex in self.vertices.iter_mut() {
// Remove "references" to the vertex, that will be deleted.
if let Some(position) = other_vertex
.neighbours
.iter()
.position(|n| *n == index as u32)
{
other_vertex.neighbours.remove(position);
}
// Shift neighbour indices to preserve vertex indexation.
for neighbour_index in other_vertex.neighbours.iter_mut() {
if *neighbour_index > index as u32 {
*neighbour_index -= 1;
}
}
}
self.vertices.remove(index)
}
/// Inserts the vertex at the given index. Automatically shifts neighbour indices of every other vertex
/// in the graph to preserve graph structure.
pub fn insert_vertex(&mut self, index: u32, vertex: T) {
self.vertices.insert(index as usize, vertex);
// Shift neighbour indices to preserve vertex indexation.
for other_vertex in self.vertices.iter_mut() {
for neighbour_index in other_vertex.neighbours.iter_mut() {
if *neighbour_index >= index {
*neighbour_index += 1;
}
}
}
}
/// Tries to build path of vertex indices from beginning point to endpoint. Returns path kind:
///
/// - Full: Path vector is a direct path from beginning to end.
/// - Partial: Path vector is a path that ends closest to the desired end, because pathfinder could not find a full path.
///
/// *See `PathKind`*
///
/// # Notes
///
/// This implementation is fast and allows for multiple searches in parallel, but does not attempt to find the optimal route
///
/// **See `Graph<T>.max_search_iterations`** to change the maximum amount of search iterations
pub fn build_indexed_path(
&self,
from: usize,
to: usize,
path: &mut Vec<usize>,
) -> Result<PathKind, PathError> {
path.clear();
if self.vertices.is_empty() {
return Err(PathError::Empty);
}
let end_pos = self
.vertices
.get(to)
.ok_or(PathError::InvalidIndex(to))?
.position;
// returns one point if the goal is the current postion
if from == to {
path.push(to);
return Ok(PathKind::Full);
}
// keeps track of which vertices we've searched
let mut searched_vertices = vec![false; self.vertices.len()];
// creates heap for searching
let mut search_heap: BinaryHeap<PartialPath> = BinaryHeap::new();
// creates first partial path and adds it to heap
search_heap.push(PartialPath::new(from));
// stores best path found
let mut best_path = PartialPath::default();
// search loop
let mut search_iteration = 0i32;
while self.max_search_iterations < 0 || search_iteration < self.max_search_iterations {
// breakes loop if heap is empty
if search_heap.is_empty() {
break;
}
// pops best partial path off the heap to use for this iteration
let current_path = search_heap.pop().unwrap();
let current_index = *current_path.vertices.last().unwrap();
let current_vertex = self
.vertices
.get(current_index)
.ok_or(PathError::InvalidIndex(current_index))?;
// updates best path
if current_path > best_path {
best_path = current_path.clone();
// breaks if end is found
if current_index == to {
break;
}
}
// evaluates path scores one level deeper and adds the paths to the heap
for i in current_vertex.neighbours.iter() {
let neighbour_index = *i as usize;
// this error is thrown for the users sake
// it shouldn't actually cause an issue because the next line would skip it
if neighbour_index == current_index {
return Err(PathError::CyclicReferenceFound(current_index));
}
// avoids going in circles
if searched_vertices[neighbour_index] {
continue;
}
let neighbour = self
.vertices
.get(neighbour_index)
.ok_or(PathError::InvalidIndex(neighbour_index))?;
let neighbour_g_score = current_path.g_score
+ ((current_vertex.position - neighbour.position).norm_squared()
* neighbour.g_penalty);
let neighbour_f_score = neighbour_g_score + heuristic(neighbour.position, end_pos);
search_heap.push(current_path.clone_and_add(
neighbour_index,
neighbour_g_score,
neighbour_f_score,
));
}
// marks vertex as searched
searched_vertices[current_index] = true;
search_iteration += 1;
}
// sets path to the best path of indices
path.clone_from(&best_path.vertices);
path.reverse();
if *path.first().unwrap() == to {
Ok(PathKind::Full)
} else if search_iteration == self.max_search_iterations - 1 {
Err(PathError::HitMaxSearchIterations(
self.max_search_iterations,
))
} else {
Ok(PathKind::Partial)
}
}
/// Tries to build path of Vector3's from beginning point to endpoint. Returns path kind:
///
/// - Full: Path vector is a direct path from beginning to end.
/// - Partial: Path vector is a path that ends closest to the desired end, because pathfinder could not find a full path.
///
/// *See `PathKind`*
///
/// # Notes
///
/// This implementation is fast and allows for multiple searches in parallel, but does not attempt to find the optimal route
///
/// **See `Graph<T>.max_search_iterations`** to change the maximum amount of search iterations
pub fn build_positional_path(
&self,
from: usize,
to: usize,
path: &mut Vec<Vector3<f32>>,
) -> Result<PathKind, PathError> {
path.clear();
let mut indices: Vec<usize> = Vec::new();
let path_kind = self.build_indexed_path(from, to, &mut indices)?;
// converts from indicies to positions
for index in indices.iter() {
let vertex = self
.vertices
.get(*index)
.ok_or(PathError::InvalidIndex(*index))?;
path.push(vertex.position);
}
Ok(path_kind)
}
/// **Deprecated** *use **`Graph<T>.build_positional_path()`** instead*
///
/// Tries to build path of Vector3's from beginning point to endpoint. Returns path kind:
///
/// - Full: Path vector is a direct path from beginning to end.
/// - Partial: Path vector is a path that ends closest to the desired end, because pathfinder could not find a full path.
///
/// *See `PathKind`*
///
/// # Notes
///
/// This implementation is fast and allows for multiple searches in parallel, but does not attempt to find the optimal route
///
/// **See `Graph<T>.max_search_iterations`** to change the maximum amount of search iterations
#[deprecated = "name is too ambiguous use build_positional_path instead"]
pub fn build(
&self,
from: usize,
to: usize,
path: &mut Vec<Vector3<f32>>,
) -> Result<PathKind, PathError> {
self.build_positional_path(from, to, path)
}
}
#[cfg(test)]
mod test {
use crate::rand::Rng;
use crate::utils::astar::PathError;
use crate::{
core::{algebra::Vector3, rand},
utils::astar::{Graph, GraphVertex, PathKind},
};
use std::time::Instant;
#[test]
fn astar_random_points() {
let mut pathfinder = Graph::<GraphVertex>::new();
let mut path = Vec::new();
assert!(pathfinder
.build_positional_path(0, 0, &mut path)
.is_err_and(|e| matches!(e, PathError::Empty)));
assert!(path.is_empty());
let size = 40;
// Create vertices.
let mut vertices = Vec::new();
for y in 0..size {
for x in 0..size {
vertices.push(GraphVertex::new(Vector3::new(x as f32, y as f32, 0.0)));
}
}
pathfinder.set_vertices(vertices);
assert!(pathfinder
.build_positional_path(100000, 99999, &mut path)
.is_err_and(|e| matches!(e, PathError::InvalidIndex(_))));
// Link vertices as grid.
for y in 0..(size - 1) {
for x in 0..(size - 1) {
pathfinder.link_bidirect(y * size + x, y * size + x + 1);
pathfinder.link_bidirect(y * size + x, (y + 1) * size + x);
}
}
let mut paths_count = 0;
for _ in 0..1000 {
let sx = rand::thread_rng().gen_range(0..(size - 1));
let sy = rand::thread_rng().gen_range(0..(size - 1));
let tx = rand::thread_rng().gen_range(0..(size - 1));
let ty = rand::thread_rng().gen_range(0..(size - 1));
let from = sy * size + sx;
let to = ty * size + tx;
assert!(pathfinder
.build_positional_path(from, to, &mut path)
.is_ok());
assert!(!path.is_empty());
if path.len() > 1 {
paths_count += 1;
assert_eq!(
*path.first().unwrap(),
pathfinder.vertex(to).unwrap().position
);
assert_eq!(
*path.last().unwrap(),
pathfinder.vertex(from).unwrap().position
);
} else {
let point = *path.first().unwrap();
assert_eq!(point, pathfinder.vertex(to).unwrap().position);
assert_eq!(point, pathfinder.vertex(from).unwrap().position);
}
for pair in path.chunks(2) {
if pair.len() == 2 {
let a = pair[0];
let b = pair[1];
assert!(a.metric_distance(&b) <= 2.0f32.sqrt());
}
}
}
assert!(paths_count > 0);
}
#[test]
fn test_remove_vertex() {
let mut pathfinder = Graph::<GraphVertex>::new();
pathfinder.add_vertex(GraphVertex::new(Vector3::new(0.0, 0.0, 0.0)));
pathfinder.add_vertex(GraphVertex::new(Vector3::new(1.0, 0.0, 0.0)));
pathfinder.add_vertex(GraphVertex::new(Vector3::new(1.0, 1.0, 0.0)));
pathfinder.link_bidirect(0, 1);
pathfinder.link_bidirect(1, 2);
pathfinder.link_bidirect(2, 0);
pathfinder.remove_vertex(0);
assert_eq!(pathfinder.vertex(0).unwrap().neighbours, vec![1]);
assert_eq!(pathfinder.vertex(1).unwrap().neighbours, vec![0]);
assert_eq!(pathfinder.vertex(2), None);
pathfinder.remove_vertex(0);
assert_eq!(pathfinder.vertex(0).unwrap().neighbours, Vec::<u32>::new());
assert_eq!(pathfinder.vertex(1), None);
assert_eq!(pathfinder.vertex(2), None);
}
#[test]
fn test_insert_vertex() {
let mut pathfinder = Graph::new();
pathfinder.add_vertex(GraphVertex::new(Vector3::new(0.0, 0.0, 0.0)));
pathfinder.add_vertex(GraphVertex::new(Vector3::new(1.0, 0.0, 0.0)));
pathfinder.add_vertex(GraphVertex::new(Vector3::new(1.0, 1.0, 0.0)));
pathfinder.link_bidirect(0, 1);
pathfinder.link_bidirect(1, 2);
pathfinder.link_bidirect(2, 0);
assert_eq!(pathfinder.vertex(0).unwrap().neighbours, vec![1, 2]);
assert_eq!(pathfinder.vertex(1).unwrap().neighbours, vec![0, 2]);
assert_eq!(pathfinder.vertex(2).unwrap().neighbours, vec![1, 0]);
pathfinder.insert_vertex(0, GraphVertex::new(Vector3::new(1.0, 1.0, 1.0)));
assert_eq!(pathfinder.vertex(0).unwrap().neighbours, Vec::<u32>::new());
assert_eq!(pathfinder.vertex(1).unwrap().neighbours, vec![2, 3]);
assert_eq!(pathfinder.vertex(2).unwrap().neighbours, vec![1, 3]);
assert_eq!(pathfinder.vertex(3).unwrap().neighbours, vec![2, 1]);
}
#[ignore = "takes multiple seconds to run"]
#[test]
/// Tests A*'s speed when finding a direct path with no obsticles
fn astar_complete_grid_benchmark() {
let start_time = Instant::now();
let mut path = Vec::new();
println!();
for size in [10, 40, 100, 500] {
println!("benchmarking grid size of: {}^2", size);
let setup_start_time = Instant::now();
let mut pathfinder = Graph::new();
// Create vertices.
let mut vertices = Vec::new();
for y in 0..size {
for x in 0..size {
vertices.push(GraphVertex::new(Vector3::new(x as f32, y as f32, 0.0)));
}
}
pathfinder.set_vertices(vertices);
// Link vertices as grid.
for y in 0..(size - 1) {
for x in 0..(size - 1) {
pathfinder.link_bidirect(y * size + x, y * size + x + 1);
pathfinder.link_bidirect(y * size + x, (y + 1) * size + x);
}
}
let setup_complete_time = Instant::now();
println!(
"setup in: {:?}",
setup_complete_time.duration_since(setup_start_time)
);
for _ in 0..1000 {
let sx = rand::thread_rng().gen_range(0..(size - 1));
let sy = rand::thread_rng().gen_range(0..(size - 1));
let tx = rand::thread_rng().gen_range(0..(size - 1));
let ty = rand::thread_rng().gen_range(0..(size - 1));
let from = sy * size + sx;
let to = ty * size + tx;
assert!(pathfinder
.build_positional_path(from, to, &mut path)
.is_ok());
assert!(!path.is_empty());
if path.len() > 1 {
assert_eq!(
*path.first().unwrap(),
pathfinder.vertex(to).unwrap().position
);
assert_eq!(
*path.last().unwrap(),
pathfinder.vertex(from).unwrap().position
);
} else {
let point = *path.first().unwrap();
assert_eq!(point, pathfinder.vertex(to).unwrap().position);
assert_eq!(point, pathfinder.vertex(from).unwrap().position);
}
for pair in path.chunks(2) {
if pair.len() == 2 {
let a = pair[0];
let b = pair[1];
assert!(a.metric_distance(&b) <= 2.0f32.sqrt());
}
}
}
println!("paths found in: {:?}", setup_complete_time.elapsed());
println!(
"Current size complete in: {:?}\n",
setup_start_time.elapsed()
);
}
println!("Total time: {:?}\n", start_time.elapsed());
}
#[ignore = "takes multiple seconds to run"]
#[test]
/// Tests A*'s speed when finding partial paths (no direct path available)
fn astar_island_benchmark() {
let start_time = Instant::now();
let size = 100;
let mut path = Vec::new();
let mut pathfinder = Graph::new();
// Create vertices.
let mut vertices = Vec::new();
for y in 0..size {
for x in 0..size {
vertices.push(GraphVertex::new(Vector3::new(x as f32, y as f32, 0.0)));
}
}
pathfinder.set_vertices(vertices);
// Link vertices as grid.
// seperates grids half way down the y-axis
for y in 0..(size - 1) {
for x in 0..(size - 1) {
if x != ((size / 2) - 1) {
pathfinder.link_bidirect(y * size + x, y * size + x + 1);
}
pathfinder.link_bidirect(y * size + x, (y + 1) * size + x);
}
}
let setup_complete_time = Instant::now();
println!(
"\nsetup in: {:?}",
setup_complete_time.duration_since(start_time)
);
for _ in 0..1000 {
// generates a random start point on the left half of the grid
let sx = rand::thread_rng().gen_range(0..((size / 2) - 1));
let sy = rand::thread_rng().gen_range(0..(size - 1));
// generates a random end point on the right half of the grid
let tx = rand::thread_rng().gen_range((size / 2)..(size - 1));
let ty = rand::thread_rng().gen_range(0..(size - 1));
let from = sy * size + sx;
let to = ty * size + tx;
let path_result = pathfinder.build_positional_path(from, to, &mut path);
let is_result_expected = path_result.as_ref().is_ok_and(|k| k.eq(&PathKind::Partial))
|| path_result.is_err_and(|e| matches!(e, PathError::HitMaxSearchIterations(_)));
assert!(is_result_expected);
assert!(!path.is_empty());
if path.len() > 1 {
// partial path should be along the divide
assert_eq!(path.first().unwrap().x as i32, ((size / 2) - 1) as i32);
// start point should be start point
assert_eq!(
*path.last().unwrap(),
pathfinder.vertex(from).unwrap().position
);
} else {
let point = *path.first().unwrap();
assert_eq!(point, pathfinder.vertex(to).unwrap().position);
assert_eq!(point, pathfinder.vertex(from).unwrap().position);
}
for pair in path.chunks(2) {
if pair.len() == 2 {
let a = pair[0];
let b = pair[1];
assert!(a.metric_distance(&b) <= 2.0f32.sqrt());
}
}
}
println!("paths found in: {:?}", setup_complete_time.elapsed());
println!("Total time: {:?}\n", start_time.elapsed());
}
#[ignore = "takes multiple seconds to run"]
#[test]
/// Tests A*'s speed when when finding indirect paths (major obstacle in the way)
fn astar_backwards_travel_benchmark() {
let start_time = Instant::now();
let size = 100;
let mut path = Vec::new();
let mut pathfinder = Graph::new();
// Create vertices.
let mut vertices = Vec::new();
for y in 0..size {
for x in 0..size {
vertices.push(GraphVertex::new(Vector3::new(x as f32, y as f32, 0.0)));
}
}
pathfinder.set_vertices(vertices);
// Link vertices as grid.
// seperates grid diagonally down the xy plane leaving only one connection in the corner
for y in 0..(size - 1) {
for x in (0..(size - 1)).rev() {
if y == 0 || x != y {
pathfinder.link_bidirect(y * size + x, y * size + x + 1);
pathfinder.link_bidirect(y * size + x, (y + 1) * size + x);
}
}
}
let setup_complete_time = Instant::now();
println!(
"\nsetup in: {:?}",
setup_complete_time.duration_since(start_time)
);
for _ in 0..1000 {
// a point on the center right edge
let from = (size / 2) * size + (size - 1);
// a point on the center top edge
let to = (size - 1) * size + (size / 2);
assert!(pathfinder
.build_positional_path(from, to, &mut path)
.is_ok());
assert!(!path.is_empty());
if path.len() > 1 {
assert_eq!(
*path.first().unwrap(),
pathfinder.vertex(to).unwrap().position
);
assert_eq!(
*path.last().unwrap(),
pathfinder.vertex(from).unwrap().position
);
} else {
let point = *path.first().unwrap();
assert_eq!(point, pathfinder.vertex(to).unwrap().position);
assert_eq!(point, pathfinder.vertex(from).unwrap().position);
}
for pair in path.chunks(2) {
if pair.len() == 2 {
let a = pair[0];
let b = pair[1];
assert!(a.metric_distance(&b) <= 2.0f32.sqrt());
}
}
}
println!("paths found in: {:?}", setup_complete_time.elapsed());
println!("Total time: {:?}\n", start_time.elapsed());
}
}