fyrox_impl/scene/sprite.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
//! Contains all structures and methods to create and manage sprites.
//!
//! For more info see [`Sprite`].
use crate::scene::node::RdcControlFlow;
use crate::{
core::{
algebra::{Vector2, Vector3},
color::Color,
math::{aabb::AxisAlignedBoundingBox, Rect, TriangleDefinition},
pool::Handle,
reflect::prelude::*,
uuid::{uuid, Uuid},
variable::InheritableVariable,
visitor::{Visit, VisitResult, Visitor},
TypeUuidProvider,
},
material,
material::{Material, MaterialResource},
renderer::{self, bundle::RenderContext},
scene::{
base::{Base, BaseBuilder},
graph::Graph,
mesh::{
buffer::{
VertexAttributeDataType, VertexAttributeDescriptor, VertexAttributeUsage,
VertexTrait,
},
RenderPath,
},
node::{Node, NodeTrait},
},
};
use fyrox_core::value_as_u8_slice;
use fyrox_graph::BaseSceneGraph;
use std::ops::{Deref, DerefMut};
/// A vertex for sprites.
#[derive(Copy, Clone, Debug, Default)]
#[repr(C)] // OpenGL expects this structure packed as in C
pub struct SpriteVertex {
/// Position of vertex in local coordinates.
pub position: Vector3<f32>,
/// Texture coordinates.
pub tex_coord: Vector2<f32>,
/// Sprite parameters: x - size, y - rotation.
pub params: Vector2<f32>,
/// Diffuse color.
pub color: Color,
}
impl VertexTrait for SpriteVertex {
fn layout() -> &'static [VertexAttributeDescriptor] {
&[
VertexAttributeDescriptor {
usage: VertexAttributeUsage::Position,
data_type: VertexAttributeDataType::F32,
size: 3,
divisor: 0,
shader_location: 0,
normalized: false,
},
VertexAttributeDescriptor {
usage: VertexAttributeUsage::TexCoord0,
data_type: VertexAttributeDataType::F32,
size: 2,
divisor: 0,
shader_location: 1,
normalized: false,
},
VertexAttributeDescriptor {
usage: VertexAttributeUsage::Custom0,
data_type: VertexAttributeDataType::F32,
size: 2,
divisor: 0,
shader_location: 2,
normalized: false,
},
VertexAttributeDescriptor {
usage: VertexAttributeUsage::Color,
data_type: VertexAttributeDataType::U8,
size: 4,
divisor: 0,
shader_location: 3,
normalized: true,
},
]
}
}
/// Sprite is a billboard which always faces towards camera. It can be used as a "model" for bullets,
/// and so on.
///
/// # Depth sorting
///
/// Sprites are **not** depth-sorted so there could be some blending issues if multiple sprites are
/// stacked one behind another.
///
/// # Performance
///
/// Sprites rendering uses batching to reduce amount of draw calls - it basically merges multiple
/// sprites with the same material into one mesh and renders it in a single draw call which is quite
/// fast and can handle tens of thousands sprites with ease. You should not, however, use sprites to
/// make particle systems, use [ParticleSystem](super::particle_system::ParticleSystem) instead.
///
/// # Example
///
/// The following example creates a new sprite node with a material, that uses a simple smoke
/// texture:
///
/// ```rust
/// # use fyrox_impl::{
/// # asset::manager::ResourceManager,
/// # core::pool::Handle,
/// # material::{Material, MaterialResource},
/// # resource::texture::Texture,
/// # scene::{base::BaseBuilder, graph::Graph, node::Node, sprite::SpriteBuilder},
/// # };
/// #
/// fn create_smoke(resource_manager: ResourceManager, graph: &mut Graph) -> Handle<Node> {
/// let mut material = Material::standard_sprite();
///
/// material
/// .set_texture(
/// &"smoke.png".into(),
/// Some(resource_manager.request::<Texture>("smoke.png")),
/// )
/// .unwrap();
///
/// SpriteBuilder::new(BaseBuilder::new())
/// .with_material(MaterialResource::new_ok(Default::default(), material))
/// .build(graph)
/// }
/// ```
///
/// Keep in mind, that this example creates new material instance each call of the method and
/// **does not** reuse it. Ideally, you should reuse the shared material across multiple instances
/// to get best possible performance. Otherwise, each your sprite will be put in a separate batch
/// which will force your GPU to render a single sprite in dedicated draw call which is quite slow.
#[derive(Debug, Reflect, Clone)]
pub struct Sprite {
base: Base,
#[reflect(setter = "set_uv_rect")]
uv_rect: InheritableVariable<Rect<f32>>,
material: InheritableVariable<MaterialResource>,
#[reflect(setter = "set_color")]
color: InheritableVariable<Color>,
#[reflect(min_value = 0.0, step = 0.1)]
#[reflect(setter = "set_size")]
size: InheritableVariable<f32>,
#[reflect(setter = "set_rotation")]
rotation: InheritableVariable<f32>,
}
impl Visit for Sprite {
fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
let mut region = visitor.enter_region(name)?;
if region.is_reading() {
if let Some(material) =
material::visit_old_texture_as_material(&mut region, Material::standard_sprite)
{
self.material = material.into();
} else {
self.material.visit("Material", &mut region)?;
}
} else {
self.material.visit("Material", &mut region)?;
}
self.base.visit("Base", &mut region)?;
self.color.visit("Color", &mut region)?;
self.size.visit("Size", &mut region)?;
self.rotation.visit("Rotation", &mut region)?;
// Backward compatibility.
let _ = self.uv_rect.visit("UvRect", &mut region);
Ok(())
}
}
impl Deref for Sprite {
type Target = Base;
fn deref(&self) -> &Self::Target {
&self.base
}
}
impl DerefMut for Sprite {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.base
}
}
impl Default for Sprite {
fn default() -> Self {
SpriteBuilder::new(BaseBuilder::new()).build_sprite()
}
}
impl TypeUuidProvider for Sprite {
fn type_uuid() -> Uuid {
uuid!("60fd7e34-46c1-4ae9-8803-1f5f4c341518")
}
}
impl Sprite {
/// Sets new size of sprite. Since sprite is always square, size defines half of width or height, so actual size
/// will be doubled. Default value is 0.2.
///
/// Negative values could be used to "inverse" the image on the sprite.
pub fn set_size(&mut self, size: f32) -> f32 {
self.size.set_value_and_mark_modified(size)
}
/// Returns current size of sprite.
pub fn size(&self) -> f32 {
*self.size
}
/// Sets new color of sprite. Default is White.
pub fn set_color(&mut self, color: Color) -> Color {
self.color.set_value_and_mark_modified(color)
}
/// Returns current color of sprite.
pub fn color(&self) -> Color {
*self.color
}
/// Sets rotation around "look" axis in radians. Default is 0.0.
pub fn set_rotation(&mut self, rotation: f32) -> f32 {
self.rotation.set_value_and_mark_modified(rotation)
}
/// Returns rotation in radians.
pub fn rotation(&self) -> f32 {
*self.rotation
}
/// Returns a reference to the current material used by the sprite.
pub fn material(&self) -> &InheritableVariable<MaterialResource> {
&self.material
}
/// Returns a reference to the current material used by the sprite.
pub fn material_mut(&mut self) -> &mut InheritableVariable<MaterialResource> {
&mut self.material
}
/// Returns a rectangle that defines the region in texture which will be rendered. The coordinates are normalized
/// which means `[0; 0]` corresponds to top-left corner of the texture and `[1; 1]` corresponds to right-bottom
/// corner.
pub fn uv_rect(&self) -> Rect<f32> {
*self.uv_rect
}
/// Sets a rectangle that defines the region in texture which will be rendered. The coordinates are normalized
/// which means `[0; 0]` corresponds to top-left corner of the texture and `[1; 1]` corresponds to right-bottom
/// corner.
///
/// The coordinates can exceed `[1; 1]` boundary to create tiling effect (keep in mind that tiling should be
/// enabled in texture options).
///
/// The default value is `(0, 0, 1, 1)` rectangle which corresponds to entire texture.
pub fn set_uv_rect(&mut self, uv_rect: Rect<f32>) -> Rect<f32> {
self.uv_rect.set_value_and_mark_modified(uv_rect)
}
}
impl NodeTrait for Sprite {
crate::impl_query_component!();
fn local_bounding_box(&self) -> AxisAlignedBoundingBox {
AxisAlignedBoundingBox::from_radius(*self.size)
}
fn world_bounding_box(&self) -> AxisAlignedBoundingBox {
self.base.world_bounding_box()
}
fn id(&self) -> Uuid {
Self::type_uuid()
}
fn collect_render_data(&self, ctx: &mut RenderContext) -> RdcControlFlow {
if !self.global_visibility()
|| !self.is_globally_enabled()
|| (self.frustum_culling()
&& !ctx
.frustum
.map_or(true, |f| f.is_intersects_aabb(&self.world_bounding_box())))
{
return RdcControlFlow::Continue;
}
if renderer::is_shadow_pass(ctx.render_pass_name) || !self.cast_shadows() {
return RdcControlFlow::Continue;
}
let position = self.global_position();
let params = Vector2::new(*self.size, *self.rotation);
type Vertex = SpriteVertex;
let vertices = [
Vertex {
position,
tex_coord: self.uv_rect.right_top_corner(),
params,
color: *self.color,
},
Vertex {
position,
tex_coord: self.uv_rect.left_top_corner(),
params,
color: *self.color,
},
Vertex {
position,
tex_coord: self.uv_rect.left_bottom_corner(),
params,
color: *self.color,
},
Vertex {
position,
tex_coord: self.uv_rect.right_bottom_corner(),
params,
color: *self.color,
},
];
let triangles = [TriangleDefinition([0, 1, 2]), TriangleDefinition([2, 3, 0])];
let sort_index = ctx.calculate_sorting_index(self.global_position());
ctx.storage.push_triangles(
Vertex::layout(),
&self.material,
RenderPath::Forward,
0,
sort_index,
false,
self.self_handle,
&mut move |mut vertex_buffer, mut triangle_buffer| {
let start_vertex_index = vertex_buffer.vertex_count();
for vertex in vertices.iter() {
vertex_buffer
.push_vertex_raw(value_as_u8_slice(vertex))
.unwrap();
}
triangle_buffer
.push_triangles_iter_with_offset(start_vertex_index, triangles.into_iter());
},
);
RdcControlFlow::Continue
}
}
/// Sprite builder allows you to construct sprite in declarative manner.
/// This is typical implementation of Builder pattern.
pub struct SpriteBuilder {
base_builder: BaseBuilder,
uv_rect: Rect<f32>,
material: MaterialResource,
color: Color,
size: f32,
rotation: f32,
}
impl SpriteBuilder {
/// Creates new builder with default state (white opaque color, 0.2 size, zero rotation).
pub fn new(base_builder: BaseBuilder) -> Self {
Self {
base_builder,
material: MaterialResource::new_ok(Default::default(), Material::standard_sprite()),
uv_rect: Rect::new(0.0, 0.0, 1.0, 1.0),
color: Color::WHITE,
size: 0.2,
rotation: 0.0,
}
}
/// Sets desired portion of the texture for the sprite. See [`Sprite::set_uv_rect`]
/// for more info.
pub fn with_uv_rect(mut self, uv_rect: Rect<f32>) -> Self {
self.uv_rect = uv_rect;
self
}
/// Sets the desired material of the sprite.
pub fn with_material(mut self, material: MaterialResource) -> Self {
self.material = material;
self
}
/// Sets desired color.
pub fn with_color(mut self, color: Color) -> Self {
self.color = color;
self
}
/// Sets desired size.
pub fn with_size(mut self, size: f32) -> Self {
self.size = size;
self
}
/// Sets desired rotation.
pub fn with_rotation(mut self, rotation: f32) -> Self {
self.rotation = rotation;
self
}
fn build_sprite(self) -> Sprite {
Sprite {
base: self.base_builder.build_base(),
material: self.material.into(),
uv_rect: self.uv_rect.into(),
color: self.color.into(),
size: self.size.into(),
rotation: self.rotation.into(),
}
}
/// Creates new sprite instance.
pub fn build_node(self) -> Node {
Node::new(self.build_sprite())
}
/// Creates new sprite instance and adds it to the graph.
pub fn build(self, graph: &mut Graph) -> Handle<Node> {
graph.add_node(self.build_node())
}
}