fyrox_impl/scene/mesh/
surface.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
//! Surface is a set of triangles with a single material. Such arrangement makes GPU rendering very efficient.
//! See [`Surface`] docs for more info and usage examples.

use crate::material::MaterialResourceExtension;
use crate::{
    core::{
        algebra::{Matrix4, Point3, Vector2, Vector3, Vector4},
        hash_combine,
        math::TriangleDefinition,
        parking_lot::{Mutex, MutexGuard},
        pool::{ErasedHandle, Handle},
        reflect::prelude::*,
        sparse::AtomicIndex,
        variable::InheritableVariable,
        visitor::{Visit, VisitResult, Visitor},
    },
    material,
    material::{Material, MaterialResource},
    resource::texture::{TextureKind, TexturePixelKind, TextureResource, TextureResourceExtension},
    scene::{
        mesh::{
            buffer::{
                TriangleBuffer, VertexAttributeUsage, VertexBuffer, VertexFetchError,
                VertexReadTrait, VertexTrait, VertexWriteTrait,
            },
            vertex::StaticVertex,
        },
        node::Node,
    },
    utils::raw_mesh::{RawMesh, RawMeshBuilder},
};
use fxhash::{FxHashMap, FxHasher};
use fyrox_core::log::Log;
use fyrox_core::uuid_provider;
use fyrox_resource::untyped::ResourceKind;
use half::f16;
use std::{hash::Hasher, sync::Arc};

/// A target shape for blending.
#[derive(Debug, Clone, Visit, Reflect, PartialEq)]
pub struct BlendShape {
    /// Weight of the shape.
    #[reflect(min_value = 0.0, max_value = 100.0, step = 1.0)]
    pub weight: f32,
    /// A name of the shape.
    #[reflect(read_only)]
    pub name: String,
}

uuid_provider!(BlendShape = "fea08418-58fe-4fde-991b-36be235432bd");

impl Default for BlendShape {
    fn default() -> Self {
        Self {
            weight: 100.0,
            name: Default::default(),
        }
    }
}

/// A container for multiple blend shapes/
#[derive(Debug, Clone, Default)]
pub struct BlendShapesContainer {
    /// A list of blend shapes.
    pub blend_shapes: Vec<BlendShape>,
    /// A volume texture that stores all blend shapes at once.
    pub blend_shape_storage: Option<TextureResource>,
}

/// A set of offsets for particular vertices.
#[derive(Clone)]
pub struct InputBlendShapeData {
    /// Weight of the shape.
    pub default_weight: f32,
    /// A name of the shape.
    pub name: String,
    /// An `index -> position` map. Could be empty if the blend shape does not change positions.
    pub positions: FxHashMap<u32, Vector3<f16>>,
    /// An `index -> normal` map. Could be empty if the blend shape does not change normals.
    pub normals: FxHashMap<u32, Vector3<f16>>,
    /// An `index -> tangent` map. Could be empty if the blend shape does not change tangents.
    pub tangents: FxHashMap<u32, Vector3<f16>>,
}

impl BlendShapesContainer {
    /// Packs all blend shapes into one volume texture.
    pub fn from_lists(
        base_shape: &VertexBuffer,
        input_blend_shapes: &[InputBlendShapeData],
    ) -> Self {
        #[repr(C)]
        #[derive(Default, Clone, Copy)]
        struct VertexData {
            position: Vector3<f16>,
            normal: Vector3<f16>,
            tangent: Vector3<f16>,
        }

        #[inline]
        fn coord_to_index(x: usize, y: usize, z: usize, width: usize, height: usize) -> usize {
            z * width * height + y * width + x
        }

        #[inline]
        fn index_to_2d_coord(index: usize, width: usize) -> Vector2<usize> {
            let y = index / width;
            let x = index - width * y; // index % textureWidth
            Vector2::new(x, y)
        }

        #[inline]
        fn fetch(
            vertices: &mut [VertexData],
            vertex_index: usize,
            width: u32,
            height: u32,
            layer: usize,
        ) -> Option<&mut VertexData> {
            let coord = index_to_2d_coord(vertex_index, width as usize);
            vertices.get_mut(coord_to_index(
                coord.x,
                coord.y,
                layer,
                width as usize,
                height as usize,
            ))
        }

        let width = base_shape.vertex_count().min(512);
        let height = (base_shape.vertex_count() as f32 / width as f32).ceil() as u32;
        let depth = input_blend_shapes.len() as u32;

        let mut vertex_data = vec![VertexData::default(); (width * height * depth) as usize];

        for (layer, blend_shape) in input_blend_shapes.iter().enumerate() {
            for (index, position) in blend_shape.positions.iter() {
                if let Some(vertex) = fetch(&mut vertex_data, *index as usize, width, height, layer)
                {
                    vertex.position = *position;
                }
            }

            for (index, normal) in blend_shape.normals.iter() {
                if let Some(vertex) = fetch(&mut vertex_data, *index as usize, width, height, layer)
                {
                    vertex.normal = *normal;
                }
            }

            for (index, tangent) in blend_shape.tangents.iter() {
                if let Some(vertex) = fetch(&mut vertex_data, *index as usize, width, height, layer)
                {
                    vertex.tangent = *tangent;
                }
            }
        }

        let bytes = crate::core::transmute_vec_as_bytes(vertex_data);

        assert_eq!(
            bytes.len(),
            (width * height * depth) as usize * std::mem::size_of::<VertexData>()
        );

        Self {
            blend_shapes: input_blend_shapes
                .iter()
                .map(|bs| BlendShape {
                    weight: bs.default_weight,
                    name: bs.name.clone(),
                })
                .collect(),
            blend_shape_storage: Some(
                TextureResource::from_bytes(
                    TextureKind::Volume {
                        width: width * 3,
                        height,
                        depth,
                    },
                    TexturePixelKind::RGB16F,
                    bytes,
                    ResourceKind::Embedded,
                )
                .unwrap(),
            ),
        }
    }
}

/// Data source of a surface. Each surface can share same data source, this is used
/// in instancing technique to render multiple instances of same model at different
/// places.
#[derive(Debug, Clone, Default)]
pub struct SurfaceData {
    /// Current vertex buffer.
    pub vertex_buffer: VertexBuffer,
    /// Current geometry buffer.
    pub geometry_buffer: TriangleBuffer,
    /// A container for blend shapes.
    pub blend_shapes_container: Option<BlendShapesContainer>,
    // If true - indicates that surface was generated and does not have reference
    // resource. Procedural data will be serialized.
    is_embedded: bool,
    pub(crate) cache_index: Arc<AtomicIndex>,
}

impl SurfaceData {
    /// Creates new data source using given vertices and indices. `is_procedural` flags affects serialization - when it
    /// is `true` the content of the vertex and triangle buffers will be serialized. It is useful if you need to save
    /// surfaces with procedural content.
    pub fn new(vertex_buffer: VertexBuffer, triangles: TriangleBuffer, is_embedded: bool) -> Self {
        Self {
            vertex_buffer,
            geometry_buffer: triangles,
            blend_shapes_container: None,
            is_embedded,
            cache_index: Arc::new(AtomicIndex::unassigned()),
        }
    }

    /// Applies given transform for every spatial part of the data (vertex position, normal, tangent).
    pub fn transform_geometry(&mut self, transform: &Matrix4<f32>) -> Result<(), VertexFetchError> {
        // Discard scale by inverse and transpose given transform (M^-1)^T
        let normal_matrix = transform.try_inverse().unwrap_or_default().transpose();

        let mut vertex_buffer_mut = self.vertex_buffer.modify();
        for mut view in vertex_buffer_mut.iter_mut() {
            let position = view.read_3_f32(VertexAttributeUsage::Position)?;
            view.write_3_f32(
                VertexAttributeUsage::Position,
                transform.transform_point(&Point3::from(position)).coords,
            )?;
            let normal = view.read_3_f32(VertexAttributeUsage::Normal)?;
            view.write_3_f32(
                VertexAttributeUsage::Normal,
                normal_matrix.transform_vector(&normal),
            )?;
            let tangent = view.read_4_f32(VertexAttributeUsage::Tangent)?;
            let new_tangent = normal_matrix.transform_vector(&tangent.xyz());
            // Keep sign (W).
            view.write_4_f32(
                VertexAttributeUsage::Tangent,
                Vector4::new(new_tangent.x, new_tangent.y, new_tangent.z, tangent.w),
            )?;
        }

        Ok(())
    }

    /// Converts raw mesh into "renderable" mesh. It is useful to build procedural meshes. See [`RawMesh`] docs for more
    /// info.
    pub fn from_raw_mesh<T>(raw: RawMesh<T>, is_embedded: bool) -> Self
    where
        T: VertexTrait,
    {
        Self {
            vertex_buffer: VertexBuffer::new(raw.vertices.len(), raw.vertices).unwrap(),
            geometry_buffer: TriangleBuffer::new(raw.triangles),
            blend_shapes_container: Default::default(),
            is_embedded,
            cache_index: Arc::new(AtomicIndex::unassigned()),
        }
    }

    /// Calculates tangents of surface. Tangents are needed for correct lighting, you will get incorrect lighting if
    /// tangents of your surface are invalid! When engine loads a mesh from "untrusted" source, it automatically calculates
    /// tangents for you, so there is no need to call this manually in this case. However if you making your mesh
    /// procedurally, you have to use this method! This method uses "classic" method which is described in:
    /// "Computing Tangent Space Basis Vectors for an Arbitrary Mesh" article by Eric Lengyel.
    pub fn calculate_tangents(&mut self) -> Result<(), VertexFetchError> {
        let mut tan1 = vec![Vector3::default(); self.vertex_buffer.vertex_count() as usize];
        let mut tan2 = vec![Vector3::default(); self.vertex_buffer.vertex_count() as usize];

        for triangle in self.geometry_buffer.iter() {
            let i1 = triangle[0] as usize;
            let i2 = triangle[1] as usize;
            let i3 = triangle[2] as usize;

            let view1 = &self.vertex_buffer.get(i1).unwrap();
            let view2 = &self.vertex_buffer.get(i2).unwrap();
            let view3 = &self.vertex_buffer.get(i3).unwrap();

            let v1 = view1.read_3_f32(VertexAttributeUsage::Position)?;
            let v2 = view2.read_3_f32(VertexAttributeUsage::Position)?;
            let v3 = view3.read_3_f32(VertexAttributeUsage::Position)?;

            // Check for degenerated triangles
            if v1 == v2 || v1 == v3 || v2 == v3 {
                Log::warn(format!(
                    "Degenerated triangle found when calculating tangents. Lighting may be \
                    incorrect! Triangle indices: {:?}. Triangle vertices: {v1} {v2} {v3}",
                    triangle,
                ));
            }

            let w1 = view1.read_3_f32(VertexAttributeUsage::TexCoord0)?;
            let w2 = view2.read_3_f32(VertexAttributeUsage::TexCoord0)?;
            let w3 = view3.read_3_f32(VertexAttributeUsage::TexCoord0)?;

            let x1 = v2.x - v1.x;
            let x2 = v3.x - v1.x;
            let y1 = v2.y - v1.y;
            let y2 = v3.y - v1.y;
            let z1 = v2.z - v1.z;
            let z2 = v3.z - v1.z;

            let s1 = w2.x - w1.x;
            let s2 = w3.x - w1.x;
            let t1 = w2.y - w1.y;
            let t2 = w3.y - w1.y;

            let r = 1.0 / (s1 * t2 - s2 * t1);

            let sdir = Vector3::new(
                (t2 * x1 - t1 * x2) * r,
                (t2 * y1 - t1 * y2) * r,
                (t2 * z1 - t1 * z2) * r,
            );

            tan1[i1] += sdir;
            tan1[i2] += sdir;
            tan1[i3] += sdir;

            let tdir = Vector3::new(
                (s1 * x2 - s2 * x1) * r,
                (s1 * y2 - s2 * y1) * r,
                (s1 * z2 - s2 * z1) * r,
            );
            tan2[i1] += tdir;
            tan2[i2] += tdir;
            tan2[i3] += tdir;
        }

        let mut vertex_buffer_mut = self.vertex_buffer.modify();
        for (mut view, (t1, t2)) in vertex_buffer_mut.iter_mut().zip(tan1.into_iter().zip(tan2)) {
            let normal = view.read_3_f32(VertexAttributeUsage::Normal)?;

            // Gram-Schmidt orthogonalize
            let tangent = (t1 - normal.scale(normal.dot(&t1)))
                .try_normalize(f32::EPSILON)
                .unwrap_or_else(|| Vector3::new(0.0, 1.0, 0.0));
            let handedness = normal.cross(&t1).dot(&t2).signum();
            view.write_4_f32(
                VertexAttributeUsage::Tangent,
                Vector4::new(tangent.x, tangent.y, tangent.z, handedness),
            )?;
        }

        Ok(())
    }

    /// Creates a quad oriented on oXY plane with unit width and height.
    pub fn make_unit_xy_quad() -> Self {
        let vertices = vec![
            StaticVertex {
                position: Vector3::default(),
                normal: Vector3::z(),
                tex_coord: Vector2::y(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::x(),
                normal: Vector3::z(),
                tex_coord: Vector2::new(1.0, 1.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(1.0, 1.0, 0.0),
                normal: Vector3::z(),
                tex_coord: Vector2::x(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::y(),
                normal: Vector3::z(),
                tex_coord: Vector2::default(),
                tangent: Vector4::default(),
            },
        ];

        let triangles = vec![TriangleDefinition([0, 1, 2]), TriangleDefinition([0, 2, 3])];

        Self::new(
            VertexBuffer::new(vertices.len(), vertices).unwrap(),
            TriangleBuffer::new(triangles),
            true,
        )
    }

    /// Creates a degenerated quad which collapsed in a point. This is very special method for sprite renderer - shader will
    /// automatically "push" corners in correct sides so sprite will always face camera.
    pub fn make_collapsed_xy_quad() -> Self {
        let vertices = vec![
            StaticVertex {
                position: Vector3::default(),
                normal: Vector3::z(),
                tex_coord: Vector2::default(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::default(),
                normal: Vector3::z(),
                tex_coord: Vector2::x(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::default(),
                normal: Vector3::z(),
                tex_coord: Vector2::new(1.0, 1.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::default(),
                normal: Vector3::z(),
                tex_coord: Vector2::y(),
                tangent: Vector4::default(),
            },
        ];

        let triangles = vec![TriangleDefinition([0, 1, 2]), TriangleDefinition([0, 2, 3])];

        Self::new(
            VertexBuffer::new(vertices.len(), vertices).unwrap(),
            TriangleBuffer::new(triangles),
            true,
        )
    }

    /// Creates new quad at oXY plane with given transform.
    pub fn make_quad(transform: &Matrix4<f32>) -> Self {
        let vertices = vec![
            StaticVertex {
                position: Vector3::new(-0.5, 0.5, 0.0),
                normal: -Vector3::z(),
                tex_coord: Vector2::new(1.0, 1.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, 0.5, 0.0),
                normal: -Vector3::z(),
                tex_coord: Vector2::new(0.0, 1.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, -0.5, 0.0),
                normal: -Vector3::z(),
                tex_coord: Vector2::new(0.0, 0.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(-0.5, -0.5, 0.0),
                normal: -Vector3::z(),
                tex_coord: Vector2::new(1.0, 0.0),
                tangent: Vector4::default(),
            },
        ];

        let mut data = Self::new(
            VertexBuffer::new(vertices.len(), vertices).unwrap(),
            TriangleBuffer::new(vec![
                TriangleDefinition([0, 1, 2]),
                TriangleDefinition([0, 2, 3]),
            ]),
            true,
        );
        data.calculate_tangents().unwrap();
        data.transform_geometry(transform).unwrap();
        data
    }

    /// Calculates per-face normals. This method is fast, but have very poor quality, and surface will look facet.
    pub fn calculate_normals(&mut self) -> Result<(), VertexFetchError> {
        let mut vertex_buffer_mut = self.vertex_buffer.modify();
        for triangle in self.geometry_buffer.iter() {
            let ia = triangle[0] as usize;
            let ib = triangle[1] as usize;
            let ic = triangle[2] as usize;

            let a = vertex_buffer_mut
                .get(ia)
                .unwrap()
                .read_3_f32(VertexAttributeUsage::Position)?;
            let b = vertex_buffer_mut
                .get(ib)
                .unwrap()
                .read_3_f32(VertexAttributeUsage::Position)?;
            let c = vertex_buffer_mut
                .get(ic)
                .unwrap()
                .read_3_f32(VertexAttributeUsage::Position)?;

            let normal = (b - a).cross(&(c - a)).normalize();

            vertex_buffer_mut
                .get_mut(ia)
                .unwrap()
                .write_3_f32(VertexAttributeUsage::Normal, normal)?;
            vertex_buffer_mut
                .get_mut(ib)
                .unwrap()
                .write_3_f32(VertexAttributeUsage::Normal, normal)?;
            vertex_buffer_mut
                .get_mut(ic)
                .unwrap()
                .write_3_f32(VertexAttributeUsage::Normal, normal)?;
        }

        Ok(())
    }

    /// Creates sphere of specified radius with given slices and stacks. The larger the `slices` and `stacks`, the smoother the sphere will be.
    /// Typical values are [16..32]. The sphere is then transformed by the given transformation matrix, which could be [`Matrix4::identity`]
    /// to not modify the sphere at all.
    pub fn make_sphere(slices: usize, stacks: usize, r: f32, transform: &Matrix4<f32>) -> Self {
        let mut builder = RawMeshBuilder::<StaticVertex>::new(stacks * slices, stacks * slices * 3);

        let d_theta = std::f32::consts::PI / slices as f32;
        let d_phi = 2.0 * std::f32::consts::PI / stacks as f32;
        let d_tc_y = 1.0 / stacks as f32;
        let d_tc_x = 1.0 / slices as f32;

        for i in 0..stacks {
            for j in 0..slices {
                let nj = j + 1;
                let ni = i + 1;

                let k0 = r * (d_theta * i as f32).sin();
                let k1 = (d_phi * j as f32).cos();
                let k2 = (d_phi * j as f32).sin();
                let k3 = r * (d_theta * i as f32).cos();

                let k4 = r * (d_theta * ni as f32).sin();
                let k5 = (d_phi * nj as f32).cos();
                let k6 = (d_phi * nj as f32).sin();
                let k7 = r * (d_theta * ni as f32).cos();

                if i != (stacks - 1) {
                    let v0 = Vector3::new(k0 * k1, k0 * k2, k3);
                    let t0 = Vector2::new(d_tc_x * j as f32, d_tc_y * i as f32);

                    let v1 = Vector3::new(k4 * k1, k4 * k2, k7);
                    let t1 = Vector2::new(d_tc_x * j as f32, d_tc_y * ni as f32);

                    let v2 = Vector3::new(k4 * k5, k4 * k6, k7);
                    let t2 = Vector2::new(d_tc_x * nj as f32, d_tc_y * ni as f32);

                    builder.insert(StaticVertex::from_pos_uv_normal(v0, t0, v0));
                    builder.insert(StaticVertex::from_pos_uv_normal(v1, t1, v1));
                    builder.insert(StaticVertex::from_pos_uv_normal(v2, t2, v2));
                }

                if i != 0 {
                    let v0 = Vector3::new(k4 * k5, k4 * k6, k7);
                    let t0 = Vector2::new(d_tc_x * nj as f32, d_tc_y * ni as f32);

                    let v1 = Vector3::new(k0 * k5, k0 * k6, k3);
                    let t1 = Vector2::new(d_tc_x * nj as f32, d_tc_y * i as f32);

                    let v2 = Vector3::new(k0 * k1, k0 * k2, k3);
                    let t2 = Vector2::new(d_tc_x * j as f32, d_tc_y * i as f32);

                    builder.insert(StaticVertex::from_pos_uv_normal(v0, t0, v0));
                    builder.insert(StaticVertex::from_pos_uv_normal(v1, t1, v1));
                    builder.insert(StaticVertex::from_pos_uv_normal(v2, t2, v2));
                }
            }
        }

        let mut data = Self::from_raw_mesh(builder.build(), true);
        data.calculate_tangents().unwrap();
        data.transform_geometry(transform).unwrap();
        data
    }

    /// Creates vertical cone with the given amount of sides, radius, height. The larger the amount of sides, the smoother the cone
    /// will be, typical values are [16..32]. The cone is then transformed using the given transformation matrix, which could be
    /// [`Matrix4::identity`] to not modify the cone at all.
    pub fn make_cone(sides: usize, r: f32, h: f32, transform: &Matrix4<f32>) -> Self {
        let mut builder = RawMeshBuilder::<StaticVertex>::new(3 * sides, 3 * sides);

        let d_phi = 2.0 * std::f32::consts::PI / sides as f32;
        let d_theta = 1.0 / sides as f32;

        for i in 0..sides {
            let nx0 = (d_phi * i as f32).cos();
            let ny0 = (d_phi * i as f32).sin();
            let nx1 = (d_phi * (i + 1) as f32).cos();
            let ny1 = (d_phi * (i + 1) as f32).sin();

            let x0 = r * nx0;
            let z0 = r * ny0;
            let x1 = r * nx1;
            let z1 = r * ny1;
            let tx0 = d_theta * i as f32;
            let tx1 = d_theta * (i + 1) as f32;

            // back cap
            let (t_cap_y_curr, t_cap_x_curr) = (d_phi * i as f32).sin_cos();
            let (t_cap_y_next, t_cap_x_next) = (d_phi * (i + 1) as f32).sin_cos();

            let t_cap_x_curr = t_cap_x_curr * 0.5 + 0.5;
            let t_cap_y_curr = t_cap_y_curr * 0.5 + 0.5;

            let t_cap_x_next = t_cap_x_next * 0.5 + 0.5;
            let t_cap_y_next = t_cap_y_next * 0.5 + 0.5;

            builder.insert(StaticVertex::from_pos_uv_normal(
                Vector3::new(0.0, 0.0, 0.0),
                Vector2::new(0.5, 0.5),
                Vector3::new(0.0, -1.0, 0.0),
            ));
            builder.insert(StaticVertex::from_pos_uv_normal(
                Vector3::new(x0, 0.0, z0),
                Vector2::new(t_cap_x_curr, t_cap_y_curr),
                Vector3::new(0.0, -1.0, 0.0),
            ));
            builder.insert(StaticVertex::from_pos_uv_normal(
                Vector3::new(x1, 0.0, z1),
                Vector2::new(t_cap_x_next, t_cap_y_next),
                Vector3::new(0.0, -1.0, 0.0),
            ));

            // sides
            let tip = Vector3::new(0.0, h, 0.0);
            let v_curr = Vector3::new(x0, 0.0, z0);
            let v_next = Vector3::new(x1, 0.0, z1);
            let n_next = (tip - v_next).cross(&(v_next - v_curr));
            let n_curr = (tip - v_curr).cross(&(v_next - v_curr));

            builder.insert(StaticVertex::from_pos_uv_normal(
                tip,
                Vector2::new(0.5, 0.0),
                n_curr,
            ));
            builder.insert(StaticVertex::from_pos_uv_normal(
                v_next,
                Vector2::new(tx1, 1.0),
                n_next,
            ));
            builder.insert(StaticVertex::from_pos_uv_normal(
                v_curr,
                Vector2::new(tx0, 1.0),
                n_curr,
            ));
        }

        let mut data = Self::from_raw_mesh(builder.build(), true);
        data.calculate_tangents().unwrap();
        data.transform_geometry(transform).unwrap();
        data
    }

    /// Creates a torus in oXY plane with the given inner and outer radii. `num_rings` defines the amount of "slices" around the Z axis of the
    /// torus shape, `num_segments` defines the amount of segments in every slice. The larger the `num_rings` and `num_segments` are, the more
    /// smooth the torus will be, typical values are `16..32`. Torus will be transformed using the given transformation matrix, which could be
    /// [`Matrix4::identity`] to not modify the torus at all.
    pub fn make_torus(
        inner_radius: f32,
        outer_radius: f32,
        num_rings: usize,
        num_segments: usize,
        transform: &Matrix4<f32>,
    ) -> Self {
        let mut vertices = Vec::new();
        for j in 0..=num_rings {
            for i in 0..=num_segments {
                let u = i as f32 / num_segments as f32 * std::f32::consts::TAU;
                let v = j as f32 / num_rings as f32 * std::f32::consts::TAU;

                let center = Vector3::new(inner_radius * u.cos(), inner_radius * u.sin(), 0.0);

                let position = Vector3::new(
                    (inner_radius + outer_radius * v.cos()) * u.cos(),
                    outer_radius * v.sin(),
                    (inner_radius + outer_radius * v.cos()) * u.sin(),
                );

                let uv = Vector2::new(i as f32 / num_segments as f32, j as f32 / num_rings as f32);

                let normal = (position - center)
                    .try_normalize(f32::EPSILON)
                    .unwrap_or_default();

                vertices.push(StaticVertex::from_pos_uv_normal(position, uv, normal));
            }
        }

        let mut triangles = Vec::new();
        for j in 1..=num_rings {
            for i in 1..=num_segments {
                let a = ((num_segments + 1) * j + i - 1) as u32;
                let b = ((num_segments + 1) * (j - 1) + i - 1) as u32;
                let c = ((num_segments + 1) * (j - 1) + i) as u32;
                let d = ((num_segments + 1) * j + i) as u32;

                triangles.push(TriangleDefinition([a, b, d]));
                triangles.push(TriangleDefinition([b, c, d]));
            }
        }

        let mut data = Self::new(
            VertexBuffer::new(vertices.len(), vertices).unwrap(),
            TriangleBuffer::new(triangles),
            true,
        );
        data.calculate_tangents().unwrap();
        data.transform_geometry(transform).unwrap();
        data
    }

    /// Creates vertical cylinder with the given amount of sides, radius, height and optional caps. The larger the `sides`, the smoother the cylinder
    /// will be, typical values are [16..32]. `caps` defines whether the cylinder will have caps or not. The cylinder is transformed using the given
    /// transformation matrix, which could be [`Matrix4::identity`] to not modify the cylinder at all.
    pub fn make_cylinder(
        sides: usize,
        r: f32,
        h: f32,
        caps: bool,
        transform: &Matrix4<f32>,
    ) -> Self {
        let mut builder = RawMeshBuilder::<StaticVertex>::new(3 * sides, 3 * sides);

        let d_phi = 2.0 * std::f32::consts::PI / sides as f32;
        let d_theta = 1.0 / sides as f32;

        for i in 0..sides {
            let nx0 = (d_phi * i as f32).cos();
            let ny0 = (d_phi * i as f32).sin();
            let nx1 = (d_phi * (i + 1) as f32).cos();
            let ny1 = (d_phi * (i + 1) as f32).sin();

            let x0 = r * nx0;
            let z0 = r * ny0;
            let x1 = r * nx1;
            let z1 = r * ny1;

            if caps {
                let (t_cap_y_curr, t_cap_x_curr) = (d_phi * i as f32).sin_cos();
                let (t_cap_y_next, t_cap_x_next) = (d_phi * (i + 1) as f32).sin_cos();

                let t_cap_x_curr = t_cap_x_curr * 0.5 + 0.5;
                let t_cap_y_curr = t_cap_y_curr * 0.5 + 0.5;

                let t_cap_x_next = t_cap_x_next * 0.5 + 0.5;
                let t_cap_y_next = t_cap_y_next * 0.5 + 0.5;

                // front cap
                builder.insert(StaticVertex::from_pos_uv_normal(
                    Vector3::new(x1, h, z1),
                    Vector2::new(t_cap_x_next, t_cap_y_next),
                    Vector3::new(0.0, 1.0, 0.0),
                ));
                builder.insert(StaticVertex::from_pos_uv_normal(
                    Vector3::new(x0, h, z0),
                    Vector2::new(t_cap_x_curr, t_cap_y_curr),
                    Vector3::new(0.0, 1.0, 0.0),
                ));
                builder.insert(StaticVertex::from_pos_uv_normal(
                    Vector3::new(0.0, h, 0.0),
                    Vector2::new(0.5, 0.5),
                    Vector3::new(0.0, 1.0, 0.0),
                ));

                // back cap
                builder.insert(StaticVertex::from_pos_uv_normal(
                    Vector3::new(x0, 0.0, z0),
                    Vector2::new(t_cap_x_curr, t_cap_y_curr),
                    Vector3::new(0.0, -1.0, 0.0),
                ));
                builder.insert(StaticVertex::from_pos_uv_normal(
                    Vector3::new(x1, 0.0, z1),
                    Vector2::new(t_cap_x_next, t_cap_y_next),
                    Vector3::new(0.0, -1.0, 0.0),
                ));
                builder.insert(StaticVertex::from_pos_uv_normal(
                    Vector3::new(0.0, 0.0, 0.0),
                    Vector2::new(0.5, 0.5),
                    Vector3::new(0.0, -1.0, 0.0),
                ));
            }

            let t_side_curr = d_theta * i as f32;
            let t_side_next = d_theta * (i + 1) as f32;

            // sides
            builder.insert(StaticVertex::from_pos_uv_normal(
                Vector3::new(x0, 0.0, z0),
                Vector2::new(t_side_curr, 0.0),
                Vector3::new(x0, 0.0, z0),
            ));
            builder.insert(StaticVertex::from_pos_uv_normal(
                Vector3::new(x0, h, z0),
                Vector2::new(t_side_curr, 1.0),
                Vector3::new(x0, 0.0, z0),
            ));
            builder.insert(StaticVertex::from_pos_uv_normal(
                Vector3::new(x1, 0.0, z1),
                Vector2::new(t_side_next, 0.0),
                Vector3::new(x1, 0.0, z1),
            ));

            builder.insert(StaticVertex::from_pos_uv_normal(
                Vector3::new(x1, 0.0, z1),
                Vector2::new(t_side_next, 0.0),
                Vector3::new(x1, 0.0, z1),
            ));
            builder.insert(StaticVertex::from_pos_uv_normal(
                Vector3::new(x0, h, z0),
                Vector2::new(t_side_curr, 1.0),
                Vector3::new(x0, 0.0, z0),
            ));
            builder.insert(StaticVertex::from_pos_uv_normal(
                Vector3::new(x1, h, z1),
                Vector2::new(t_side_next, 1.0),
                Vector3::new(x1, 0.0, z1),
            ));
        }

        let mut data = Self::from_raw_mesh(builder.build(), true);
        data.calculate_tangents().unwrap();
        data.transform_geometry(transform).unwrap();
        data
    }

    /// Creates unit cube with the given transform, which could be [`Matrix4::identity`] to not modify the cube at all and leave it unit.
    pub fn make_cube(transform: Matrix4<f32>) -> Self {
        let vertices = vec![
            // Front
            StaticVertex {
                position: Vector3::new(-0.5, -0.5, 0.5),
                normal: Vector3::z(),
                tex_coord: Vector2::default(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(-0.5, 0.5, 0.5),
                normal: Vector3::z(),
                tex_coord: Vector2::y(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, 0.5, 0.5),
                normal: Vector3::z(),
                tex_coord: Vector2::new(1.0, 1.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, -0.5, 0.5),
                normal: Vector3::z(),
                tex_coord: Vector2::x(),
                tangent: Vector4::default(),
            },
            // Back
            StaticVertex {
                position: Vector3::new(-0.5, -0.5, -0.5),
                normal: -Vector3::z(),
                tex_coord: Vector2::default(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(-0.5, 0.5, -0.5),
                normal: -Vector3::z(),
                tex_coord: Vector2::y(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, 0.5, -0.5),
                normal: -Vector3::z(),
                tex_coord: Vector2::new(1.0, 1.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, -0.5, -0.5),
                normal: -Vector3::z(),
                tex_coord: Vector2::x(),
                tangent: Vector4::default(),
            },
            // Left
            StaticVertex {
                position: Vector3::new(-0.5, -0.5, -0.5),
                normal: -Vector3::x(),
                tex_coord: Vector2::default(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(-0.5, 0.5, -0.5),
                normal: -Vector3::x(),
                tex_coord: Vector2::y(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(-0.5, 0.5, 0.5),
                normal: -Vector3::x(),
                tex_coord: Vector2::new(1.0, 1.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(-0.5, -0.5, 0.5),
                normal: -Vector3::x(),
                tex_coord: Vector2::x(),
                tangent: Vector4::default(),
            },
            // Right
            StaticVertex {
                position: Vector3::new(0.5, -0.5, -0.5),
                normal: Vector3::x(),
                tex_coord: Vector2::default(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, 0.5, -0.5),
                normal: Vector3::x(),
                tex_coord: Vector2::y(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, 0.5, 0.5),
                normal: Vector3::x(),
                tex_coord: Vector2::new(1.0, 1.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, -0.5, 0.5),
                normal: Vector3::x(),
                tex_coord: Vector2::x(),
                tangent: Vector4::default(),
            },
            // Top
            StaticVertex {
                position: Vector3::new(-0.5, 0.5, 0.5),
                normal: Vector3::y(),
                tex_coord: Vector2::default(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(-0.5, 0.5, -0.5),
                normal: Vector3::y(),
                tex_coord: Vector2::y(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, 0.5, -0.5),
                normal: Vector3::y(),
                tex_coord: Vector2::new(1.0, 1.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, 0.5, 0.5),
                normal: Vector3::y(),
                tex_coord: Vector2::x(),
                tangent: Vector4::default(),
            },
            // Bottom
            StaticVertex {
                position: Vector3::new(-0.5, -0.5, 0.5),
                normal: -Vector3::y(),
                tex_coord: Vector2::default(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(-0.5, -0.5, -0.5),
                normal: -Vector3::y(),
                tex_coord: Vector2::y(),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, -0.5, -0.5),
                normal: -Vector3::y(),
                tex_coord: Vector2::new(1.0, 1.0),
                tangent: Vector4::default(),
            },
            StaticVertex {
                position: Vector3::new(0.5, -0.5, 0.5),
                normal: -Vector3::y(),
                tex_coord: Vector2::x(),
                tangent: Vector4::default(),
            },
        ];

        let triangles = vec![
            TriangleDefinition([2, 1, 0]),
            TriangleDefinition([3, 2, 0]),
            TriangleDefinition([4, 5, 6]),
            TriangleDefinition([4, 6, 7]),
            TriangleDefinition([10, 9, 8]),
            TriangleDefinition([11, 10, 8]),
            TriangleDefinition([12, 13, 14]),
            TriangleDefinition([12, 14, 15]),
            TriangleDefinition([18, 17, 16]),
            TriangleDefinition([19, 18, 16]),
            TriangleDefinition([20, 21, 22]),
            TriangleDefinition([20, 22, 23]),
        ];

        let mut data = Self::new(
            VertexBuffer::new(vertices.len(), vertices).unwrap(),
            TriangleBuffer::new(triangles),
            true,
        );
        data.calculate_tangents().unwrap();
        data.transform_geometry(&transform).unwrap();
        data
    }

    /// Calculates hash based on the contents of the surface shared data. This could be time-consuming
    /// if there's a lot of vertices or indices.
    pub fn content_hash(&self) -> u64 {
        hash_combine(
            self.geometry_buffer.content_hash(),
            self.vertex_buffer.content_hash(),
        )
    }

    /// Clears both vertex and index buffers.
    pub fn clear(&mut self) {
        self.geometry_buffer.modify().clear();
        self.vertex_buffer.modify().clear();
    }

    /// Marks surface's content as procedural (created from code) or not. Content of procedural surfaces will
    /// be serialized. It is useful if you need to save procedural surfaces to disk or some other storage.
    pub fn set_embedded(&mut self, is_embedded: bool) {
        self.is_embedded = is_embedded;
    }
}

impl Visit for SurfaceData {
    fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
        let mut region = visitor.enter_region(name)?;

        self.is_embedded.visit("IsProcedural", &mut region)?;

        if self.is_embedded {
            self.vertex_buffer.visit("VertexBuffer", &mut region)?;
            self.geometry_buffer.visit("GeometryBuffer", &mut region)?
        }

        Ok(())
    }
}

/// Vertex weight is a pair of (bone; weight) that affects vertex.
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct VertexWeight {
    /// Exact weight value in [0; 1] range
    pub value: f32,
    /// Handle to an entity that affects this vertex. It has double meaning
    /// relative to context:
    /// 1. When converting fbx model to engine node it points to FbxModel
    ///    that control this vertex via sub deformer.
    /// 2. After conversion is done, on resolve stage it points to a Node
    ///    in a scene to which converter put all the nodes.
    pub effector: ErasedHandle,
}

impl Default for VertexWeight {
    fn default() -> Self {
        Self {
            value: 0.0,
            effector: ErasedHandle::none(),
        }
    }
}

/// Weight set contains up to four pairs of (bone; weight).
#[derive(Copy, Clone, Debug, PartialEq, Default)]
pub struct VertexWeightSet {
    weights: [VertexWeight; 4],
    count: usize,
}

impl VertexWeightSet {
    /// Pushes new weight in the set and returns true if vertex was pushed,
    /// false - otherwise.
    pub fn push(&mut self, weight: VertexWeight) -> bool {
        if self.count < self.weights.len() {
            self.weights[self.count] = weight;
            self.count += 1;
            true
        } else {
            false
        }
    }

    /// Returns exact amount of weights in the set.
    pub fn len(&self) -> usize {
        self.count
    }

    /// Returns true if set is empty.
    pub fn is_empty(&self) -> bool {
        self.count == 0
    }

    /// Returns shared iterator.
    pub fn iter(&self) -> std::slice::Iter<VertexWeight> {
        self.weights[0..self.count].iter()
    }

    /// Returns mutable iterator.
    pub fn iter_mut(&mut self) -> std::slice::IterMut<VertexWeight> {
        self.weights[0..self.count].iter_mut()
    }

    /// Normalizes weights in the set so they form unit 4-d vector. This method is useful
    /// when mesh has more than 4 weights per vertex. Engine supports only 4 weights per
    /// vertex so when there are more than 4 weights, first four weights may not give sum
    /// equal to 1.0, we must fix that to prevent weirdly looking results.
    pub fn normalize(&mut self) {
        let len = self.iter().fold(0.0, |qs, w| qs + w.value * w.value).sqrt();
        if len >= f32::EPSILON {
            let k = 1.0 / len;
            for w in self.iter_mut() {
                w.value *= k;
            }
        }
    }
}

/// Surface shared data is a vertex and index buffer that can be shared across multiple objects. This is
/// very useful memory optimization - you create a single data storage for a surface and then share it
/// with any instance count you want. Memory usage does not increase with instance count in this case.
#[derive(Default, Debug, Clone, Reflect)]
pub struct SurfaceSharedData(#[reflect(hidden)] Arc<Mutex<SurfaceData>>);

impl PartialEq for SurfaceSharedData {
    fn eq(&self, other: &Self) -> bool {
        Arc::ptr_eq(&self.0, &other.0)
    }
}

impl Visit for SurfaceSharedData {
    fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
        self.0.visit(name, visitor)
    }
}

impl SurfaceSharedData {
    /// Creates new surface shared data.
    pub fn new(data: SurfaceData) -> Self {
        Self(Arc::new(Mutex::new(data)))
    }

    /// Provides access to inner data.
    pub fn lock(&self) -> MutexGuard<'_, SurfaceData> {
        self.0.lock()
    }

    /// Returns unique numeric id of the surface shared data. The id is not stable across multiple runs of
    /// your application!
    pub fn key(&self) -> u64 {
        &*self.0 as *const _ as u64
    }

    /// Creates a deep clone of the data.
    pub fn deep_clone(&self) -> Self {
        Self::new(self.lock().clone())
    }

    /// Returns total amount of uses of the shared data.
    pub fn use_count(&self) -> usize {
        Arc::strong_count(&self.0)
    }
}

/// Surface is a set of triangles with a single material. Such arrangement makes GPU rendering very efficient.
///
/// Surfaces can use the same data source across many instances, this is a memory optimization for being able to
/// re-use data when you need to draw the same mesh in many places. It guarantees, that the data will be in single
/// instance on your GPU.
///
/// ## Examples
///
/// ```rust
/// # use fyrox_impl::{
/// #     core::{
/// #         algebra::{Vector2, Vector3, Vector4},
/// #         math::TriangleDefinition,
/// #     },
/// #     scene::mesh::{
/// #         buffer::{TriangleBuffer, VertexBuffer},
/// #         surface::{Surface, SurfaceBuilder, SurfaceData, SurfaceSharedData},
/// #         vertex::StaticVertex,
/// #     },
/// # };
/// fn create_triangle_surface() -> Surface {
///     let vertex_buffer = VertexBuffer::new(
///         3,
///         vec![
///             StaticVertex {
///                 position: Vector3::new(0.0, 0.0, 0.0),
///                 tex_coord: Vector2::new(0.0, 0.0),
///                 normal: Vector3::new(0.0, 0.0, 1.0),
///                 tangent: Vector4::new(1.0, 0.0, 0.0, 1.0),
///             },
///             StaticVertex {
///                 position: Vector3::new(0.0, 1.0, 0.0),
///                 tex_coord: Vector2::new(0.0, 1.0),
///                 normal: Vector3::new(0.0, 0.0, 1.0),
///                 tangent: Vector4::new(1.0, 0.0, 0.0, 1.0),
///             },
///             StaticVertex {
///                 position: Vector3::new(1.0, 1.0, 0.0),
///                 tex_coord: Vector2::new(1.0, 1.0),
///                 normal: Vector3::new(0.0, 0.0, 1.0),
///                 tangent: Vector4::new(1.0, 0.0, 0.0, 1.0),
///             },
///         ],
///     )
///     .unwrap();
///
///     let triangle_buffer = TriangleBuffer::new(vec![TriangleDefinition([0, 1, 2])]);
///
///     let data = SurfaceData::new(vertex_buffer, triangle_buffer, true);
///
///     SurfaceBuilder::new(SurfaceSharedData::new(data)).build()
/// }
/// ```
///
/// This code crates a simple triangle in oXY plane with clockwise winding with normal facing towards the screen.
/// To learn more about vertex and triangle buffers, see [`VertexBuffer`] and [`TriangleBuffer`] docs respectively.
///
/// Usually, there's no need to create surfaces on per-vertex basis, you can use on of the pre-made methods of
/// [`SurfaceData`] to create complex 3D shapes:
///
/// ```rust
/// # use fyrox_impl::{
/// #     core::algebra::Matrix4,
/// #     scene::mesh::surface::{Surface, SurfaceBuilder, SurfaceData, SurfaceSharedData},
/// # };
/// fn create_cone_surface() -> Surface {
///     SurfaceBuilder::new(SurfaceSharedData::new(SurfaceData::make_cone(
///         16,
///         1.0,
///         2.0,
///         &Matrix4::identity(),
///     )))
///     .build()
/// }
/// ```
///
/// This code snippet creates a cone surface instance, check the docs for [`SurfaceData`] for more info about built-in
/// methods.
#[derive(Debug, Reflect, PartialEq)]
pub struct Surface {
    pub(crate) data: InheritableVariable<SurfaceSharedData>,

    pub(crate) material: InheritableVariable<MaterialResource>,

    /// Array of handles to scene nodes which are used as bones.
    pub bones: InheritableVariable<Vec<Handle<Node>>>,

    #[reflect(
        description = "If true, then the current material will become a unique instance when cloning the surface.\
        Could be useful if you need to have unique materials per on every instance. Keep in mind that this option \
        might affect performance!"
    )]
    unique_material: InheritableVariable<bool>,

    // Temporal array for FBX conversion needs, it holds skinning data (weight + bone handle)
    // and will be used to fill actual bone indices and weight in vertices that will be
    // sent to GPU. The idea is very simple: GPU needs to know only indices of matrices of
    // bones so we can use `bones` array as reference to get those indices. This could be done
    // like so: iterate over all vertices and weight data and calculate index of node handle that
    // associated with vertex in `bones` array and store it as bone index in vertex.
    #[reflect(hidden)]
    pub(crate) vertex_weights: Vec<VertexWeightSet>,
}

uuid_provider!(Surface = "485caf12-4e7d-4b1a-b6bd-0681fd92f789");

impl Clone for Surface {
    fn clone(&self) -> Self {
        Self {
            data: self.data.clone(),
            material: if *self.unique_material {
                // Create unique instance.
                self.material.deep_copy_as_embedded().into()
            } else {
                // Share the material.
                self.material.clone()
            },
            bones: self.bones.clone(),
            unique_material: self.unique_material.clone(),
            vertex_weights: self.vertex_weights.clone(),
        }
    }
}

impl Visit for Surface {
    fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
        let mut region = visitor.enter_region(name)?;

        // Backward compatibility.
        if region.is_reading() {
            if let Some(material) = material::visit_old_material(&mut region) {
                self.material = material.into();
            } else {
                self.material.visit("Material", &mut region)?;
            }
        } else {
            self.material.visit("Material", &mut region)?;
        }

        self.data.visit("Data", &mut region)?;
        self.bones.visit("Bones", &mut region)?;
        let _ = self.unique_material.visit("UniqueMaterial", &mut region); // Backward compatibility.

        Ok(())
    }
}

impl Default for Surface {
    fn default() -> Self {
        Self {
            data: SurfaceSharedData::new(SurfaceData::make_cube(Matrix4::identity())).into(),
            material: MaterialResource::new_ok(Default::default(), Material::standard()).into(),
            vertex_weights: Default::default(),
            bones: Default::default(),
            unique_material: Default::default(),
        }
    }
}

impl Surface {
    /// Creates new surface instance with given data and without any texture.
    #[inline]
    pub fn new(data: SurfaceSharedData) -> Self {
        Self {
            data: data.into(),
            ..Default::default()
        }
    }

    /// Calculates material id.
    pub fn material_id(&self) -> u64 {
        self.material.key() as u64
    }

    /// Calculates batch id.
    pub fn batch_id(&self) -> u64 {
        let mut hasher = FxHasher::default();
        hasher.write_u64(self.material_id());
        hasher.write_u64(self.data.key());
        hasher.finish()
    }

    /// Returns current data used by surface.
    #[inline]
    pub fn data(&self) -> SurfaceSharedData {
        (*self.data).clone()
    }

    /// Returns current data used by surface.
    #[inline]
    pub fn data_ref(&self) -> &SurfaceSharedData {
        &self.data
    }

    /// Returns current material of the surface.
    pub fn material(&self) -> &MaterialResource {
        &self.material
    }

    /// Sets new material for the surface.
    pub fn set_material(&mut self, material: MaterialResource) {
        self.material.set_value_and_mark_modified(material);
    }

    /// Returns list of bones that affects the surface.
    #[inline]
    pub fn bones(&self) -> &[Handle<Node>] {
        &self.bones
    }

    /// Returns true if the material will be a unique instance when cloning the surface.
    pub fn is_unique_material(&self) -> bool {
        *self.unique_material
    }

    /// Defines whether the material will be a unique instance when cloning the surface.
    pub fn set_unique_material(&mut self, unique: bool) {
        self.unique_material.set_value_and_mark_modified(unique);
    }
}

/// Surface builder allows you to create surfaces in declarative manner.
pub struct SurfaceBuilder {
    data: SurfaceSharedData,
    material: Option<MaterialResource>,
    bones: Vec<Handle<Node>>,
    unique_material: bool,
}

impl SurfaceBuilder {
    /// Creates new builder instance with given data and no textures or bones.
    pub fn new(data: SurfaceSharedData) -> Self {
        Self {
            data,
            material: None,
            bones: Default::default(),
            unique_material: false,
        }
    }

    /// Sets desired diffuse texture.
    pub fn with_material(mut self, material: MaterialResource) -> Self {
        self.material = Some(material);
        self
    }

    /// Sets desired bones array. Make sure your vertices has valid indices of bones!
    pub fn with_bones(mut self, bones: Vec<Handle<Node>>) -> Self {
        self.bones = bones;
        self
    }

    /// Sets whether the material will be a unique instance when cloning the surface.
    pub fn with_unique_material(mut self, unique: bool) -> Self {
        self.unique_material = unique;
        self
    }

    /// Creates new instance of surface.
    pub fn build(self) -> Surface {
        Surface {
            data: self.data.into(),
            material: self
                .material
                .unwrap_or_else(|| {
                    MaterialResource::new_ok(Default::default(), Material::standard())
                })
                .into(),
            vertex_weights: Default::default(),
            bones: self.bones.into(),
            unique_material: self.unique_material.into(),
        }
    }
}