1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
//! Vertex buffer with dynamic layout. See [`VertexBuffer`] docs for more info and usage examples.

use crate::{
    core::{
        algebra::{Vector2, Vector3, Vector4},
        arrayvec::ArrayVec,
        byteorder::{ByteOrder, LittleEndian},
        futures::io::Error,
        math::TriangleDefinition,
        visitor::{prelude::*, PodVecView},
    },
    core::{array_as_u8_slice, value_as_u8_slice},
};
use fxhash::FxHasher;
use std::{
    alloc::Layout,
    fmt::{Display, Formatter},
    hash::{Hash, Hasher},
    marker::PhantomData,
    mem::MaybeUninit,
    ops::{Deref, DerefMut, Index, IndexMut, RangeBounds},
    vec::Drain,
};

/// A common trait for all vertex types. **IMPORTANT:** Implementors **must** use `#[repr(C)]` attribute, otherwise the compiler
/// is free to reorder fields and you might get weird results, because definition order will be different from memory order! See
/// examples in [`VertexBuffer`] docs.
pub trait VertexTrait: Copy + 'static {
    /// Returns memory layout of the vertex. It basically tells a GPU how to interpret every byte range
    /// of your vertex type; which kind of information it holds.
    fn layout() -> &'static [VertexAttributeDescriptor];
}

/// Data type for a vertex attribute component.
#[derive(Copy, Clone, PartialOrd, PartialEq, Eq, Ord, Hash, Visit, Debug)]
#[repr(u8)]
pub enum VertexAttributeDataType {
    /// 32-bit floating-point.
    F32,
    /// 32-bit unsigned integer.
    U32,
    /// 16-bit unsigned integer.
    U16,
    /// 8-bit unsigned integer.
    U8,
}

impl Default for VertexAttributeDataType {
    fn default() -> Self {
        Self::F32
    }
}

impl VertexAttributeDataType {
    /// Returns size of data in bytes.
    pub fn size(self) -> u8 {
        match self {
            VertexAttributeDataType::F32 | VertexAttributeDataType::U32 => 4,
            VertexAttributeDataType::U16 => 2,
            VertexAttributeDataType::U8 => 1,
        }
    }
}

/// An usage for vertex attribute. It is a fixed set, but there are plenty
/// room for any custom data - it may be fit into `TexCoordN` attributes.
#[derive(Copy, Clone, PartialOrd, PartialEq, Eq, Ord, Hash, Visit, Debug)]
#[repr(u32)]
pub enum VertexAttributeUsage {
    /// Vertex position. Usually `Vector2<f32>` or `Vector3<f32>`.
    Position = 0,
    /// Vertex normal. Usually `Vector3<f32>`, more rare `Vector3<u16>` (F16).
    Normal = 1,
    /// Vertex tangent. Usually `Vector3<f32>`.
    Tangent = 2,
    /// First texture coordinates. Usually `Vector2<f32>`.
    /// It may be used for everything else, not only for texture coordinates.
    TexCoord0 = 3,
    /// Second texture coordinates.
    TexCoord1 = 4,
    /// Third texture coordinates.
    TexCoord2 = 5,
    /// Fourth texture coordinates.
    TexCoord3 = 6,
    /// Fifth texture coordinates.
    TexCoord4 = 7,
    /// Sixth texture coordinates.
    TexCoord5 = 8,
    /// Seventh texture coordinates.
    TexCoord6 = 9,
    /// Eighth texture coordinates.
    TexCoord7 = 10,
    /// Bone weights. Usually `Vector4<f32>`.
    BoneWeight = 11,
    /// Bone indices. Usually `Vector4<u8>`.
    BoneIndices = 12,
    /// Color. Usually `Vector4<u8>`.
    Color = 13,
    /// First custom attribute with arbitrary, context-dependent meaning.
    Custom0 = 14,
    /// Second custom attribute with arbitrary, context-dependent meaning.
    Custom1 = 15,
    /// Third custom attribute with arbitrary, context-dependent meaning.
    Custom2 = 16,
    /// Fourth custom attribute with arbitrary, context-dependent meaning.
    Custom3 = 17,
    /// Fifth custom attribute with arbitrary, context-dependent meaning.
    Custom4 = 18,
    /// Sixth custom attribute with arbitrary, context-dependent meaning.
    Custom5 = 19,
    /// Seventh custom attribute with arbitrary, context-dependent meaning.
    Custom6 = 20,
    /// Eigth custom attribute with arbitrary, context-dependent meaning.
    Custom7 = 21,
    /// Maximum amount of attribute kinds.
    Count,
}

impl Default for VertexAttributeUsage {
    fn default() -> Self {
        Self::Position
    }
}

/// Input vertex attribute descriptor used to construct layouts and feed vertex buffer.
#[derive(Debug, Hash)]
pub struct VertexAttributeDescriptor {
    /// Claimed usage of the attribute. It could be Position, Normal, etc.
    pub usage: VertexAttributeUsage,
    /// Data type of every component of the attribute. It could be F32, U32, U16, etc.
    pub data_type: VertexAttributeDataType,
    /// Size of attribute expressed in components. For example, for `Position` it could
    /// be 3 - which means there are 3 components in attribute of `data_type`.
    pub size: u8,
    /// Sets a "fetch rate" for vertex shader at which it will read vertex attribute:
    ///  0 - per vertex (default)
    ///  1 - per instance
    ///  2 - per 2 instances and so on.
    pub divisor: u8,
    /// Defines location of the attribute in a shader (`layout(location = x) attrib;`)
    pub shader_location: u8,
    /// Whether the attribute values should be normalized into `0.0..1.0` range or not.
    /// If this field is set to `false`, then the numbers will appear "as-is" when fetching
    /// them in a shader. On the other hand, if it is `true`, then any numeric value will be
    /// normalized by applying `normalized = num / T::max()` equation. This way all numbers will
    /// always stay in `0.0..1.0` range.
    ///
    /// For example, normalization could be useful for RGB colors that expressed as three bytes (u8).
    /// In this case normalization will turn the color into `0.0..1.0` range.  
    pub normalized: bool,
}

/// Vertex attribute is a simple "bridge" between raw data and its interpretation. In
/// other words it defines how to treat raw data in vertex shader.
#[derive(Visit, Copy, Clone, Default, Debug, Hash)]
pub struct VertexAttribute {
    /// Claimed usage of the attribute. It could be Position, Normal, etc.
    pub usage: VertexAttributeUsage,
    /// Data type of every component of the attribute. It could be F32, U32, U16, etc.
    pub data_type: VertexAttributeDataType,
    /// Size of attribute expressed in components. For example, for `Position` it could
    /// be 3 - which means there are 3 components in attribute of `data_type`.
    pub size: u8,
    /// Sets a "fetch rate" for vertex shader at which it will read vertex attribute:
    ///  0 - per vertex (default)
    ///  1 - per instance
    ///  2 - per 2 instances and so on.
    pub divisor: u8,
    /// Offset in bytes from beginning of the vertex.
    pub offset: u8,
    /// Defines location of the attribute in a shader (`layout(location = x) attrib;`)
    pub shader_location: u8,
    /// Whether the attribute values should be normalized into `0.0..1.0` range or not.
    /// If this field is set to `false`, then the numbers will appear "as-is" when fetching
    /// them in a shader. On the other hand, if it is `true`, then any numeric value will be
    /// normalized by applying `normalized = num / T::max()` equation. This way all numbers will
    /// always stay in `0.0..1.0` range.
    ///
    /// For example, normalization could be useful for RGB colors that expressed as three bytes (u8).
    /// In this case normalization will turn the color into `0.0..1.0` range.  
    #[visit(optional)]
    pub normalized: bool,
}

/// Bytes storage of a vertex buffer.
#[derive(Clone, Debug)]
pub struct BytesStorage {
    bytes: Vec<u8>,
    layout: Layout,
}

impl Visit for BytesStorage {
    fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
        let mut bytes_adapter = PodVecView::from_pod_vec(&mut self.bytes);
        if bytes_adapter.visit(name, visitor).is_err() {
            let mut bytes = Vec::<u8>::new();
            bytes.visit(name, visitor)?;
            self.bytes = bytes;
        }

        if visitor.is_reading() {
            self.layout = Layout::array::<u8>(self.bytes.capacity()).unwrap();
        }
        Ok(())
    }
}

impl Default for BytesStorage {
    fn default() -> Self {
        Self {
            bytes: Default::default(),
            layout: Layout::array::<u8>(0).unwrap(),
        }
    }
}

impl BytesStorage {
    /// Creates new empty bytes storage with the given capacity.
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            bytes: Vec::with_capacity(capacity),
            layout: Layout::array::<u8>(capacity).unwrap(),
        }
    }

    /// Creates new bytes storage from the given data buffer.
    pub fn new<T>(data: Vec<T>) -> Self {
        // Prevent destructor to be called on `data`, this is needed because we're taking its
        // data storage and treat it as a simple bytes block.
        let mut data = std::mem::ManuallyDrop::new(data);
        let bytes_length = data.len() * std::mem::size_of::<T>();
        let bytes_capacity = data.capacity() * std::mem::size_of::<T>();
        Self {
            bytes: unsafe {
                Vec::<u8>::from_raw_parts(
                    data.as_mut_ptr() as *mut u8,
                    bytes_length,
                    bytes_capacity,
                )
            },
            // Preserve initial memory layout, to ensure that the memory block will be deallocated
            // with initial memory layout.
            layout: Layout::array::<T>(data.capacity()).unwrap(),
        }
    }

    fn extend_from_slice(&mut self, slice: &[u8]) {
        if self.layout.align() != 1 {
            // Realloc backing storage manually if the alignment is anything else than 1.
            let new_storage = Vec::with_capacity(self.bytes.len());
            let old_storage = std::mem::replace(&mut self.bytes, new_storage);
            self.bytes.extend_from_slice(old_storage.as_slice());
            self.layout = Layout::array::<u8>(self.bytes.capacity()).unwrap();
        }
        self.bytes.extend_from_slice(slice);
        self.layout = Layout::array::<u8>(self.bytes.capacity()).unwrap();
    }

    fn drain<R>(&mut self, range: R) -> Drain<'_, u8>
    where
        R: RangeBounds<usize>,
    {
        self.bytes.drain(range)
    }

    fn as_mut_ptr(&mut self) -> *mut u8 {
        self.bytes.as_mut_ptr()
    }

    fn as_slice_mut(&mut self) -> &mut [u8] {
        self.bytes.as_mut_slice()
    }

    fn clear(&mut self) {
        self.bytes.clear()
    }
}

impl Drop for BytesStorage {
    fn drop(&mut self) {
        let mut bytes = std::mem::ManuallyDrop::new(std::mem::take(&mut self.bytes));
        // Dealloc manually with initial memory layout.
        if bytes.capacity() != 0 {
            unsafe { std::alloc::dealloc(bytes.as_mut_ptr(), self.layout) }
        }
    }
}

impl Deref for BytesStorage {
    type Target = Vec<u8>;

    fn deref(&self) -> &Self::Target {
        &self.bytes
    }
}

/// Vertex buffer with dynamic layout. It is used to store multiple vertices of a single type, that implements [`VertexTrait`].
/// Different vertex types used to for efficient memory usage. For example, you could have a simple vertex with only position
/// expressed as Vector3 and it will be enough for simple cases, when only position is required. However, if you want to draw
/// a mesh with skeletal animation, that also supports texturing, lighting, you need to provide a lot more data (bone indices,
/// bone weights, normals, tangents, texture coordinates).
///
/// ## Examples
///
/// ```rust
/// # use fyrox_impl::{
/// #     core::algebra::Vector3,
/// #     scene::mesh::buffer::{
/// #         VertexAttributeDataType, VertexAttributeDescriptor, VertexAttributeUsage, VertexBuffer,
/// #         VertexTrait,
/// #     },
/// # };
/// #
/// #[derive(Copy, Clone)]
/// #[repr(C)]
/// struct MyVertex {
///     position: Vector3<f32>,
/// }
///
/// impl VertexTrait for MyVertex {
///     fn layout() -> &'static [VertexAttributeDescriptor] {
///         &[VertexAttributeDescriptor {
///             usage: VertexAttributeUsage::Position,
///             data_type: VertexAttributeDataType::F32,
///             size: 3,
///             divisor: 0,
///             shader_location: 0,
///             normalized: false
///         }]
///     }
/// }
///
/// fn create_triangle_vertex_buffer() -> VertexBuffer {
///     VertexBuffer::new(
///         3,
///         vec![
///             MyVertex {
///                 position: Vector3::new(0.0, 0.0, 0.0),
///             },
///             MyVertex {
///                 position: Vector3::new(0.0, 1.0, 0.0),
///             },
///             MyVertex {
///                 position: Vector3::new(1.0, 1.0, 0.0),
///             },
///         ],
///     )
///     .unwrap()
/// }  
/// ```
///
/// This example creates a simple vertex buffer that contains a single triangle with custom vertex format. The most important
/// part here is [`VertexTrait::layout`] implementation - it describes each "attribute" of your vertex, if your layout does not
/// match the actual content of the vertex (in terms of size in bytes), then vertex buffer cannot be created and [`VertexBuffer::new`]
/// will return [`None`].
///
/// The second, but not least important is `#[repr(C)]` attribute - it is mandatory for every vertex type, it forbids fields
/// reordering of you vertex structure and guarantees that they will have the same layout in memory as their declaration order.
///
/// ## Limitations
///
/// Vertex size cannot be more than 256 bytes, this limitation shouldn't be a problem because almost every GPU supports up to
/// 16 vertex attributes with 16 bytes of size each, which gives exactly 256 bytes.
#[derive(Clone, Visit, Default, Debug)]
pub struct VertexBuffer {
    dense_layout: Vec<VertexAttribute>,
    sparse_layout: [Option<VertexAttribute>; VertexAttributeUsage::Count as usize],
    vertex_size: u8,
    vertex_count: u32,
    data: BytesStorage,
    #[visit(optional)]
    layout_hash: u64,
    #[visit(optional)]
    modifications_counter: u64,
}

fn calculate_layout_hash(layout: &[VertexAttribute]) -> u64 {
    let mut hasher = FxHasher::default();
    layout.hash(&mut hasher);
    hasher.finish()
}

fn calculate_data_hash(data: &[u8]) -> u64 {
    let mut hasher = FxHasher::default();
    data.hash(&mut hasher);
    hasher.finish()
}

/// See VertexBuffer::modify for more info.
pub struct VertexBufferRefMut<'a> {
    vertex_buffer: &'a mut VertexBuffer,
}

impl<'a> Drop for VertexBufferRefMut<'a> {
    fn drop(&mut self) {
        self.vertex_buffer.modifications_counter += 1;
    }
}

impl<'a> Deref for VertexBufferRefMut<'a> {
    type Target = VertexBuffer;

    fn deref(&self) -> &Self::Target {
        self.vertex_buffer
    }
}

impl<'a> DerefMut for VertexBufferRefMut<'a> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.vertex_buffer
    }
}

impl<'a> VertexBufferRefMut<'a> {
    /// Tries to append a vertex to the buffer.
    ///
    /// # Safety and validation
    ///
    /// This method accepts any type that has appropriate size, the size must be equal
    /// with the size defined by layout. The Copy trait bound is required to ensure that
    /// the type does not have any custom destructors.
    pub fn push_vertex<T>(&mut self, vertex: &T) -> Result<(), ValidationError>
    where
        T: VertexTrait,
    {
        if std::mem::size_of::<T>() == self.vertex_buffer.vertex_size as usize {
            self.vertex_buffer
                .data
                .extend_from_slice(value_as_u8_slice(vertex));
            self.vertex_buffer.vertex_count += 1;
            Ok(())
        } else {
            Err(ValidationError::InvalidVertexSize {
                expected: self.vertex_buffer.vertex_size,
                actual: std::mem::size_of::<T>() as u8,
            })
        }
    }

    /// Tries to append a slice of vertices to the buffer.
    ///
    /// # Safety and validation
    ///
    /// This method accepts any type that has appropriate size, the size must be equal
    /// with the size defined by layout. The Copy trait bound is required to ensure that
    /// the type does not have any custom destructors.
    pub fn push_vertices<T>(&mut self, vertices: &[T]) -> Result<(), ValidationError>
    where
        T: VertexTrait,
    {
        if std::mem::size_of::<T>() == self.vertex_buffer.vertex_size as usize {
            self.vertex_buffer
                .data
                .extend_from_slice(array_as_u8_slice(vertices));
            self.vertex_buffer.vertex_count += vertices.len() as u32;
            Ok(())
        } else {
            Err(ValidationError::InvalidVertexSize {
                expected: self.vertex_buffer.vertex_size,
                actual: std::mem::size_of::<T>() as u8,
            })
        }
    }

    /// Tries to append a raw vertex data to the vertex buffer. This method will fail if the `data`
    /// size does not match the vertex size of the buffer.
    pub fn push_vertex_raw(&mut self, data: &[u8]) -> Result<(), ValidationError> {
        if data.len() == self.vertex_buffer.vertex_size as usize {
            self.vertex_buffer.data.extend_from_slice(data);
            self.vertex_buffer.vertex_count += 1;
            Ok(())
        } else {
            Err(ValidationError::InvalidVertexSize {
                expected: self.vertex_buffer.vertex_size,
                actual: data.len() as u8,
            })
        }
    }

    /// Tries to append the vertices that the given iterator produces.
    ///
    /// # Safety and validation
    ///
    /// This method accepts any type that has appropriate size, the size must be equal
    /// with the size defined by layout. The Copy trait bound is required to ensure that
    /// the type does not have any custom destructors.
    pub fn push_vertices_iter<T>(
        &mut self,
        vertices: impl Iterator<Item = T>,
    ) -> Result<(), ValidationError>
    where
        T: VertexTrait,
    {
        if std::mem::size_of::<T>() == self.vertex_buffer.vertex_size as usize {
            for vertex in vertices {
                self.vertex_buffer
                    .data
                    .extend_from_slice(value_as_u8_slice(&vertex));
                self.vertex_buffer.vertex_count += 1;
            }
            Ok(())
        } else {
            Err(ValidationError::InvalidVertexSize {
                expected: self.vertex_buffer.vertex_size,
                actual: std::mem::size_of::<T>() as u8,
            })
        }
    }

    /// Tries to append a slice of vertices to the buffer. Each vertex will be transformed using
    /// `transformer` callback.
    ///
    /// # Safety and validation
    ///
    /// This method accepts any type that has appropriate size, the size must be equal
    /// with the size defined by layout. The Copy trait bound is required to ensure that
    /// the type does not have any custom destructors.
    pub fn push_vertices_transform<T, F>(
        &mut self,
        vertices: &[T],
        mut transformer: F,
    ) -> Result<(), ValidationError>
    where
        T: VertexTrait,
        F: FnMut(&T) -> T,
    {
        if std::mem::size_of::<T>() == self.vertex_buffer.vertex_size as usize {
            for vertex in vertices {
                let transformed = transformer(vertex);

                self.vertex_buffer
                    .data
                    .extend_from_slice(value_as_u8_slice(&transformed));
            }
            self.vertex_buffer.vertex_count += vertices.len() as u32;
            Ok(())
        } else {
            Err(ValidationError::InvalidVertexSize {
                expected: self.vertex_buffer.vertex_size,
                actual: std::mem::size_of::<T>() as u8,
            })
        }
    }

    /// Removes last vertex from the buffer.
    pub fn remove_last_vertex(&mut self) {
        let range = (self.vertex_buffer.data.len() - self.vertex_buffer.vertex_size as usize)..;
        self.vertex_buffer.data.drain(range);
        self.vertex_buffer.vertex_count -= 1;
    }

    /// Copies data of last vertex from the buffer to an instance of variable of a type.
    ///
    /// # Safety and validation
    ///
    /// This method accepts any type that has appropriate size, the size must be equal
    /// with the size defined by layout. The Copy trait bound is required to ensure that
    /// the type does not have any custom destructors.
    pub fn pop_vertex<T>(&mut self) -> Result<T, ValidationError>
    where
        T: VertexTrait,
    {
        if std::mem::size_of::<T>() == self.vertex_buffer.vertex_size as usize
            && self.vertex_buffer.data.len() >= self.vertex_buffer.vertex_size as usize
        {
            unsafe {
                let mut v = MaybeUninit::<T>::uninit();
                std::ptr::copy_nonoverlapping(
                    self.vertex_buffer.data.as_ptr().add(
                        self.vertex_buffer.data.len() - self.vertex_buffer.vertex_size as usize,
                    ),
                    v.as_mut_ptr() as *mut u8,
                    self.vertex_buffer.vertex_size as usize,
                );
                let range =
                    (self.vertex_buffer.data.len() - self.vertex_buffer.vertex_size as usize)..;
                self.vertex_buffer.data.drain(range);
                self.vertex_buffer.vertex_count -= 1;
                Ok(v.assume_init())
            }
        } else {
            Err(ValidationError::InvalidVertexSize {
                expected: self.vertex_buffer.vertex_size,
                actual: std::mem::size_of::<T>() as u8,
            })
        }
    }

    /// Tries to cast internal data buffer to a slice of given type. It may fail if
    /// size of type is not equal with claimed size (which is set by the layout).
    pub fn cast_data_mut<T>(&mut self) -> Result<&mut [T], ValidationError>
    where
        T: VertexTrait,
    {
        if std::mem::size_of::<T>() == self.vertex_buffer.vertex_size as usize {
            Ok(unsafe {
                std::slice::from_raw_parts_mut(
                    self.vertex_buffer.data.as_mut_ptr() as *const T as *mut T,
                    self.vertex_buffer.data.len() / std::mem::size_of::<T>(),
                )
            })
        } else {
            Err(ValidationError::InvalidVertexSize {
                expected: self.vertex_buffer.vertex_size,
                actual: std::mem::size_of::<T>() as u8,
            })
        }
    }

    /// Creates iterator that emits read/write accessors for vertices.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = VertexViewMut<'_>> + '_ {
        unsafe {
            VertexViewMutIterator {
                ptr: self.vertex_buffer.data.as_mut_ptr(),
                end: self.data.as_mut_ptr().add(
                    self.vertex_buffer.vertex_size as usize
                        * self.vertex_buffer.vertex_count as usize,
                ),
                vertex_size: self.vertex_buffer.vertex_size,
                sparse_layout: &self.vertex_buffer.sparse_layout,
                marker: PhantomData,
            }
        }
    }

    /// Returns a read/write accessor of n-th vertex.
    pub fn get_mut(&mut self, n: usize) -> Option<VertexViewMut<'_>> {
        let offset = n * self.vertex_buffer.vertex_size as usize;
        if offset < self.vertex_buffer.data.len() {
            Some(VertexViewMut {
                vertex_data: &mut self.vertex_buffer.data.as_slice_mut()
                    [offset..(offset + self.vertex_buffer.vertex_size as usize)],
                sparse_layout: &self.vertex_buffer.sparse_layout,
            })
        } else {
            None
        }
    }

    /// Duplicates n-th vertex and puts it at the back of the buffer.
    pub fn duplicate(&mut self, n: usize) {
        // Vertex cannot be larger than 256 bytes, so having temporary array of
        // such size is ok.
        let mut temp = ArrayVec::<u8, 256>::new();
        temp.try_extend_from_slice(
            &self.vertex_buffer.data[(n * self.vertex_buffer.vertex_size as usize)
                ..((n + 1) * self.vertex_buffer.vertex_size as usize)],
        )
        .unwrap();
        self.vertex_buffer.data.extend_from_slice(temp.as_slice());
        self.vertex_buffer.vertex_count += 1;
    }

    /// Adds new attribute at the end of layout, reorganizes internal data storage to be
    /// able to contain new attribute. Default value of the new attribute in the buffer
    /// becomes `fill_value`. Graphically this could be represented like so:
    ///
    /// Add secondary texture coordinates:
    ///  Before: P1_N1_TC1_P2_N2_TC2...
    ///  After: P1_N1_TC1_TC2(fill_value)_P2_N2_TC2_TC2(fill_value)...
    pub fn add_attribute<T>(
        &mut self,
        descriptor: VertexAttributeDescriptor,
        fill_value: T,
    ) -> Result<(), ValidationError>
    where
        T: Copy,
    {
        if self.vertex_buffer.sparse_layout[descriptor.usage as usize].is_some() {
            Err(ValidationError::DuplicatedAttributeDescriptor)
        } else {
            let vertex_attribute = VertexAttribute {
                usage: descriptor.usage,
                data_type: descriptor.data_type,
                size: descriptor.size,
                divisor: descriptor.divisor,
                offset: self.vertex_buffer.vertex_size,
                shader_location: descriptor.shader_location,
                normalized: descriptor.normalized,
            };
            self.vertex_buffer.sparse_layout[descriptor.usage as usize] = Some(vertex_attribute);
            self.vertex_buffer.dense_layout.push(vertex_attribute);

            self.layout_hash = calculate_layout_hash(&self.vertex_buffer.dense_layout);

            let mut new_data = Vec::new();

            for chunk in self
                .vertex_buffer
                .data
                .chunks_exact(self.vertex_buffer.vertex_size as usize)
            {
                let mut temp = ArrayVec::<u8, 256>::new();
                temp.try_extend_from_slice(chunk).unwrap();
                temp.try_extend_from_slice(value_as_u8_slice(&fill_value))
                    .unwrap();
                new_data.extend_from_slice(&temp);
            }

            self.vertex_buffer.data = BytesStorage::new(new_data);

            self.vertex_buffer.vertex_size += std::mem::size_of::<T>() as u8;

            Ok(())
        }
    }

    /// Clears the buffer making it empty.
    pub fn clear(&mut self) {
        self.data.clear();
        self.vertex_count = 0;
    }
}

/// An error that may occur during input data and layout validation.
#[derive(Debug)]
pub enum ValidationError {
    /// Attribute size must be either 1, 2, 3 or 4.
    InvalidAttributeSize(usize),

    /// Data size is not correct.
    InvalidDataSize {
        /// Expected data size in bytes.
        expected: usize,
        /// Actual data size in bytes.
        actual: usize,
    },

    /// Trying to add vertex of incorrect size.
    InvalidVertexSize {
        /// Expected vertex size.
        expected: u8,
        /// Actual vertex size.
        actual: u8,
    },

    /// A duplicate of a descriptor was found.
    DuplicatedAttributeDescriptor,

    /// Duplicate shader locations were found.
    ConflictingShaderLocations(usize),
}

impl Display for ValidationError {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self {
            ValidationError::InvalidAttributeSize(v) => {
                write!(f, "Invalid attribute size {v}. Must be either 1, 2, 3 or 4")
            }
            ValidationError::InvalidDataSize { expected, actual } => {
                write!(f, "Invalid data size. Expected {expected}, got {actual}.")
            }
            ValidationError::InvalidVertexSize { expected, actual } => {
                write!(f, "Invalid vertex size. Expected {expected}, got {actual}.",)
            }
            ValidationError::DuplicatedAttributeDescriptor => {
                write!(f, "A duplicate of a descriptor was found.")
            }
            ValidationError::ConflictingShaderLocations(v) => {
                write!(f, "Duplicate shader locations were found {v}.")
            }
        }
    }
}

impl VertexBuffer {
    /// Creates new vertex buffer from provided data and with the given layout of the vertex type `T`.
    pub fn new<T>(vertex_count: usize, data: Vec<T>) -> Result<Self, ValidationError>
    where
        T: VertexTrait,
    {
        Self::new_with_layout(T::layout(), vertex_count, BytesStorage::new(data))
    }

    /// Creates new vertex buffer from the given layout, vertex count and bytes storage.
    pub fn new_with_layout(
        layout: &[VertexAttributeDescriptor],
        vertex_count: usize,
        bytes: BytesStorage,
    ) -> Result<Self, ValidationError> {
        // Validate for duplicates and invalid layout.
        for descriptor in layout {
            for other_descriptor in layout {
                if !std::ptr::eq(descriptor, other_descriptor) {
                    if descriptor.usage == other_descriptor.usage {
                        return Err(ValidationError::DuplicatedAttributeDescriptor);
                    } else if descriptor.shader_location == other_descriptor.shader_location {
                        return Err(ValidationError::ConflictingShaderLocations(
                            descriptor.shader_location as usize,
                        ));
                    }
                }
            }
        }

        let mut dense_layout = Vec::new();

        // Validate everything as much as possible and calculate vertex size.
        let mut sparse_layout = [None; VertexAttributeUsage::Count as usize];
        let mut vertex_size_bytes = 0u8;
        for attribute in layout.iter() {
            if attribute.size < 1 || attribute.size > 4 {
                return Err(ValidationError::InvalidAttributeSize(
                    attribute.size as usize,
                ));
            }

            let vertex_attribute = VertexAttribute {
                usage: attribute.usage,
                data_type: attribute.data_type,
                size: attribute.size,
                divisor: attribute.divisor,
                offset: vertex_size_bytes,
                shader_location: attribute.shader_location,
                normalized: attribute.normalized,
            };

            dense_layout.push(vertex_attribute);

            // Map dense to sparse layout to increase performance.
            sparse_layout[attribute.usage as usize] = Some(vertex_attribute);

            vertex_size_bytes += attribute.size * attribute.data_type.size();
        }

        let expected_data_size = vertex_count * vertex_size_bytes as usize;
        if expected_data_size != bytes.len() {
            return Err(ValidationError::InvalidDataSize {
                expected: expected_data_size,
                actual: bytes.len(),
            });
        }

        Ok(Self {
            vertex_size: vertex_size_bytes,
            vertex_count: vertex_count as u32,
            modifications_counter: 0,
            data: bytes,
            layout_hash: calculate_layout_hash(&dense_layout),
            sparse_layout,
            dense_layout,
        })
    }

    /// Creates a new empty vertex buffer with the same layout and vertex size, but with an empty
    /// inner buffer of the specified capacity.  
    pub fn clone_empty(&self, capacity: usize) -> Self {
        Self {
            dense_layout: self.dense_layout.clone(),
            sparse_layout: self.sparse_layout,
            vertex_size: self.vertex_size,
            vertex_count: 0,
            data: BytesStorage::with_capacity(capacity),
            layout_hash: self.layout_hash,
            modifications_counter: 0,
        }
    }

    /// Returns a reference to underlying data buffer slice.
    pub fn raw_data(&self) -> &[u8] {
        &self.data
    }

    /// Returns true if buffer does not contain any vertex, false - otherwise.
    pub fn is_empty(&self) -> bool {
        self.vertex_count == 0
    }

    /// Returns the total amount of times the buffer was modified.
    pub fn modifications_count(&self) -> u64 {
        self.modifications_counter
    }

    /// Calculates inner data hash.
    pub fn content_hash(&self) -> u64 {
        calculate_data_hash(&self.data.bytes)
    }

    /// Returns hash of vertex buffer layout. Cached value is guaranteed to be in actual state.
    /// The hash could be used to check if the layout has changed.
    pub fn layout_hash(&self) -> u64 {
        self.layout_hash
    }

    /// Provides mutable access to content of the buffer.
    ///
    /// # Performance
    ///
    /// This method returns special structure which has custom destructor that
    /// calculates hash of the data once modification is over. You **must** hold
    /// this structure as long as possible while modifying contents of the buffer.
    /// Do **not** even try to do this:
    ///
    /// ```no_run
    /// use fyrox_impl::{
    ///     scene::mesh::buffer::{VertexBuffer, VertexWriteTrait, VertexAttributeUsage},
    ///     core::algebra::Vector3
    /// };
    /// fn do_something(buffer: &mut VertexBuffer) {
    ///     for i in 0..buffer.vertex_count() {
    ///         buffer
    ///             .modify() // Doing this in a loop will cause HUGE performance issues!
    ///             .get_mut(i as usize)
    ///             .unwrap()
    ///             .write_3_f32(VertexAttributeUsage::Position, Vector3::<f32>::default())
    ///             .unwrap();
    ///     }
    /// }
    /// ```
    ///
    /// Instead do this:
    ///
    /// ```no_run
    /// use fyrox_impl::{
    ///     scene::mesh::buffer::{VertexBuffer, VertexWriteTrait, VertexAttributeUsage},
    ///     core::algebra::Vector3
    /// };
    /// fn do_something(buffer: &mut VertexBuffer) {
    ///     let mut buffer_modifier = buffer.modify();
    ///     for mut vertex in buffer_modifier.iter_mut() {
    ///         vertex
    ///             .write_3_f32(VertexAttributeUsage::Position, Vector3::<f32>::default())
    ///             .unwrap();
    ///     }
    /// }
    /// ```
    ///
    /// Why do we even need such complications? It is used for lazy hash calculation which is
    /// used for automatic upload of contents to GPU in case if content has changed.
    pub fn modify(&mut self) -> VertexBufferRefMut<'_> {
        VertexBufferRefMut {
            vertex_buffer: self,
        }
    }

    /// Checks if an attribute of `usage` exists.
    pub fn has_attribute(&self, usage: VertexAttributeUsage) -> bool {
        self.sparse_layout[usage as usize].is_some()
    }

    /// Returns vertex buffer layout.
    pub fn layout(&self) -> &[VertexAttribute] {
        &self.dense_layout
    }

    /// Returns vertex buffer layout.
    pub fn layout_descriptor(&self) -> impl Iterator<Item = VertexAttributeDescriptor> + '_ {
        self.dense_layout
            .iter()
            .map(|attrib| VertexAttributeDescriptor {
                usage: attrib.usage,
                data_type: attrib.data_type,
                size: attrib.size,
                divisor: attrib.divisor,
                shader_location: attrib.shader_location,
                normalized: attrib.normalized,
            })
    }

    /// Tries to cast internal data buffer to a slice of given type. It may fail if
    /// size of type is not equal with claimed size (which is set by the layout).
    pub fn cast_data_ref<T>(&self) -> Result<&[T], ValidationError>
    where
        T: VertexTrait,
    {
        if std::mem::size_of::<T>() == self.vertex_size as usize {
            Ok(unsafe {
                std::slice::from_raw_parts(
                    self.data.as_ptr() as *const T,
                    self.data.len() / std::mem::size_of::<T>(),
                )
            })
        } else {
            Err(ValidationError::InvalidVertexSize {
                expected: self.vertex_size,
                actual: std::mem::size_of::<T>() as u8,
            })
        }
    }

    /// Creates iterator that emits read accessors for vertices.
    pub fn iter(&self) -> impl Iterator<Item = VertexViewRef<'_>> + '_ {
        VertexViewRefIterator {
            data: &self.data,
            offset: 0,
            end: self.vertex_size as usize * self.vertex_count as usize,
            vertex_size: self.vertex_size,
            sparse_layout: &self.sparse_layout,
        }
    }

    /// Returns a read accessor of n-th vertex.
    pub fn get(&self, n: usize) -> Option<VertexViewRef<'_>> {
        let offset = n * self.vertex_size as usize;
        if offset < self.data.len() {
            Some(VertexViewRef {
                vertex_data: &self.data[offset..(offset + self.vertex_size as usize)],
                sparse_layout: &self.sparse_layout,
            })
        } else {
            None
        }
    }

    /// Returns exact amount of vertices in the buffer.
    pub fn vertex_count(&self) -> u32 {
        self.vertex_count
    }

    /// Return vertex size of the buffer.
    pub fn vertex_size(&self) -> u8 {
        self.vertex_size
    }

    /// Finds free location for an attribute in the layout.
    pub fn find_free_shader_location(&self) -> u8 {
        let mut location = None;
        for attribute in self.dense_layout.chunks_exact(2) {
            let left = &attribute[0];
            let right = &attribute[1];

            if (left.shader_location as i32 - right.shader_location as i32).abs() > 1 {
                // We have a gap, use some value from it.
                let origin = left.shader_location.min(right.shader_location);
                location = Some(origin + 1);
                break;
            }
        }

        location.unwrap_or_else(|| {
            self.dense_layout
                .last()
                .map(|a| a.shader_location)
                .unwrap_or(0)
                + 1
        })
    }

    /// Tries to find an attribute with the given `usage` and if it exists, returns its "view", that
    /// allows you to fetch data like in ordinary array.
    #[inline]
    pub fn attribute_view<T>(&self, usage: VertexAttributeUsage) -> Option<AttributeViewRef<'_, T>>
    where
        T: Copy,
    {
        self.dense_layout
            .iter()
            .find(|attribute| {
                attribute.usage == usage
                    && attribute.size * attribute.data_type.size() == std::mem::size_of::<T>() as u8
            })
            .map(|attribute| AttributeViewRef {
                ptr: unsafe { self.data.bytes.as_ptr().add(attribute.offset as usize) },
                stride: self.vertex_size as usize,
                count: self.vertex_count as usize,
                phantom: Default::default(),
            })
    }

    /// Tries to find an attribute with the given `usage` and if it exists, returns its "view", that
    /// allows you to fetch data like in ordinary array.
    #[inline]
    pub fn attribute_view_mut<T: Copy>(
        &mut self,
        usage: VertexAttributeUsage,
    ) -> Option<AttributeViewRef<'_, T>> {
        if let Some(attribute) = self.dense_layout.iter().find(|attribute| {
            attribute.usage == usage
                && attribute.size * attribute.data_type.size() == std::mem::size_of::<T>() as u8
        }) {
            Some(AttributeViewRef {
                ptr: unsafe { self.data.bytes.as_mut_ptr().add(attribute.offset as usize) },
                stride: self.vertex_size as usize,
                count: self.vertex_count as usize,
                phantom: Default::default(),
            })
        } else {
            None
        }
    }
}

struct VertexViewRefIterator<'a> {
    data: &'a [u8],
    sparse_layout: &'a [Option<VertexAttribute>],
    offset: usize,
    end: usize,
    vertex_size: u8,
}

impl<'a> Iterator for VertexViewRefIterator<'a> {
    type Item = VertexViewRef<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.offset >= self.end {
            None
        } else {
            let view = VertexViewRef {
                vertex_data: &self.data[self.offset..(self.offset + self.vertex_size as usize)],
                sparse_layout: self.sparse_layout,
            };
            self.offset += self.vertex_size as usize;
            Some(view)
        }
    }
}

struct VertexViewMutIterator<'a> {
    ptr: *mut u8,
    sparse_layout: &'a [Option<VertexAttribute>],
    end: *mut u8,
    vertex_size: u8,
    marker: PhantomData<&'a mut u8>,
}

impl<'a> Iterator for VertexViewMutIterator<'a> {
    type Item = VertexViewMut<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.ptr >= self.end {
            None
        } else {
            unsafe {
                let data = std::slice::from_raw_parts_mut(self.ptr, self.vertex_size as usize);
                let view = VertexViewMut {
                    vertex_data: data,
                    sparse_layout: self.sparse_layout,
                };
                self.ptr = self.ptr.add(self.vertex_size as usize);
                Some(view)
            }
        }
    }
}

/// Read accessor for a vertex with some layout.
#[derive(Debug)]
pub struct VertexViewRef<'a> {
    vertex_data: &'a [u8],
    sparse_layout: &'a [Option<VertexAttribute>],
}

impl<'a> PartialEq for VertexViewRef<'a> {
    fn eq(&self, other: &Self) -> bool {
        self.vertex_data == other.vertex_data
    }
}

/// Read/write accessor for a vertex with some layout.
#[derive(Debug)]
pub struct VertexViewMut<'a> {
    vertex_data: &'a mut [u8],
    sparse_layout: &'a [Option<VertexAttribute>],
}

impl<'a> PartialEq for VertexViewMut<'a> {
    fn eq(&self, other: &Self) -> bool {
        self.vertex_data == other.vertex_data
    }
}

/// An error that may occur during fetching using vertex read/write accessor.
#[derive(Debug)]
pub enum VertexFetchError {
    /// Trying to read/write non-existent attribute.
    NoSuchAttribute(VertexAttributeUsage),
    /// Size mistmatch.
    SizeMismatch {
        /// Expected size in bytes.
        expected: u8,
        /// Actual size in bytes.
        actual: u8,
    },
    /// IO error.
    Io(std::io::Error),
}

impl std::error::Error for VertexFetchError {}

impl Display for VertexFetchError {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self {
            VertexFetchError::NoSuchAttribute(v) => {
                write!(f, "No attribute with such usage: {v:?}")
            }
            VertexFetchError::Io(v) => {
                write!(f, "An i/o error has occurred {v:?}")
            }
            VertexFetchError::SizeMismatch { expected, actual } => {
                write!(f, "Size mismatch. Expected {expected}, got {actual}")
            }
        }
    }
}

impl From<std::io::Error> for VertexFetchError {
    fn from(e: Error) -> Self {
        Self::Io(e)
    }
}

/// A trait for read-only vertex data accessor.
pub trait VertexReadTrait {
    #[doc(hidden)]
    fn data_layout_ref(&self) -> (&[u8], &[Option<VertexAttribute>]);

    /// Clones the vertex and applies the given transformer closure to it and returns a stack-allocated
    /// data buffer representing the transformed vertex.
    #[inline(always)]
    fn transform<F>(&self, func: &mut F) -> ArrayVec<u8, 256>
    where
        F: FnMut(VertexViewMut),
    {
        let (data, layout) = self.data_layout_ref();
        let mut transformed = ArrayVec::new();
        transformed
            .try_extend_from_slice(data)
            .expect("Vertex size cannot be larger than 256 bytes!");
        func(VertexViewMut {
            vertex_data: &mut transformed,
            sparse_layout: layout,
        });
        transformed
    }

    /// Tries to read an attribute with given usage as a pair of two f32.
    #[inline(always)]
    fn read_2_f32(&self, usage: VertexAttributeUsage) -> Result<Vector2<f32>, VertexFetchError> {
        let (data, layout) = self.data_layout_ref();
        if let Some(attribute) = layout.get(usage as usize).unwrap() {
            let x = LittleEndian::read_f32(&data[(attribute.offset as usize)..]);
            let y = LittleEndian::read_f32(&data[(attribute.offset as usize + 4)..]);
            Ok(Vector2::new(x, y))
        } else {
            Err(VertexFetchError::NoSuchAttribute(usage))
        }
    }

    /// Tries to read an attribute with given usage as a pair of three f32.
    #[inline(always)]
    fn read_3_f32(&self, usage: VertexAttributeUsage) -> Result<Vector3<f32>, VertexFetchError> {
        let (data, layout) = self.data_layout_ref();
        if let Some(attribute) = layout.get(usage as usize).unwrap() {
            let x = LittleEndian::read_f32(&data[(attribute.offset as usize)..]);
            let y = LittleEndian::read_f32(&data[(attribute.offset as usize + 4)..]);
            let z = LittleEndian::read_f32(&data[(attribute.offset as usize + 8)..]);
            Ok(Vector3::new(x, y, z))
        } else {
            Err(VertexFetchError::NoSuchAttribute(usage))
        }
    }

    /// Tries to read an attribute with given usage as a pair of four f32.
    #[inline(always)]
    fn read_4_f32(&self, usage: VertexAttributeUsage) -> Result<Vector4<f32>, VertexFetchError> {
        let (data, layout) = self.data_layout_ref();
        if let Some(attribute) = layout.get(usage as usize).unwrap() {
            let x = LittleEndian::read_f32(&data[(attribute.offset as usize)..]);
            let y = LittleEndian::read_f32(&data[(attribute.offset as usize + 4)..]);
            let z = LittleEndian::read_f32(&data[(attribute.offset as usize + 8)..]);
            let w = LittleEndian::read_f32(&data[(attribute.offset as usize + 12)..]);
            Ok(Vector4::new(x, y, z, w))
        } else {
            Err(VertexFetchError::NoSuchAttribute(usage))
        }
    }

    /// Tries to read an attribute with given usage as a pair of four u8.
    #[inline(always)]
    fn read_4_u8(&self, usage: VertexAttributeUsage) -> Result<Vector4<u8>, VertexFetchError> {
        let (data, layout) = self.data_layout_ref();
        if let Some(attribute) = layout.get(usage as usize).unwrap() {
            let offset = attribute.offset as usize;
            let x = data[offset];
            let y = data[offset + 1];
            let z = data[offset + 2];
            let w = data[offset + 3];
            Ok(Vector4::new(x, y, z, w))
        } else {
            Err(VertexFetchError::NoSuchAttribute(usage))
        }
    }
}

impl<'a> VertexReadTrait for VertexViewRef<'a> {
    fn data_layout_ref(&self) -> (&[u8], &[Option<VertexAttribute>]) {
        (self.vertex_data, self.sparse_layout)
    }
}

/// A trait for read/write vertex data accessor.
pub trait VertexWriteTrait: VertexReadTrait {
    #[doc(hidden)]
    fn data_layout_mut(&mut self) -> (&mut [u8], &[Option<VertexAttribute>]);

    /// Tries to find an attribute of the given type and returns a mutable reference of the specified
    /// type. Type casting will fail if the size of the destination type `T` does not match the
    /// actual attribute size.
    #[inline(always)]
    fn cast_attribute<T: Copy>(
        &mut self,
        usage: VertexAttributeUsage,
    ) -> Result<&mut T, VertexFetchError> {
        let (data, layout) = self.data_layout_mut();
        if let Some(attribute) = layout.get(usage as usize).unwrap() {
            let expected_size = (attribute.size * attribute.data_type.size()) as usize;
            let actual_size = std::mem::size_of::<T>();
            if expected_size == std::mem::size_of::<T>() {
                Ok(unsafe { &mut *(data.as_mut_ptr().add(attribute.offset as usize) as *mut T) })
            } else {
                Err(VertexFetchError::SizeMismatch {
                    expected: expected_size as u8,
                    actual: actual_size as u8,
                })
            }
        } else {
            Err(VertexFetchError::NoSuchAttribute(usage))
        }
    }

    /// Tries to write an attribute with given usage as a pair of two f32.
    fn write_2_f32(
        &mut self,
        usage: VertexAttributeUsage,
        value: Vector2<f32>,
    ) -> Result<(), VertexFetchError>;

    /// Tries to write an attribute with given usage as a pair of three f32.
    fn write_3_f32(
        &mut self,
        usage: VertexAttributeUsage,
        value: Vector3<f32>,
    ) -> Result<(), VertexFetchError>;

    /// Tries to write an attribute with given usage as a pair of four f32.
    fn write_4_f32(
        &mut self,
        usage: VertexAttributeUsage,
        value: Vector4<f32>,
    ) -> Result<(), VertexFetchError>;

    /// Tries to write an attribute with given usage as a pair of four u8.
    fn write_4_u8(
        &mut self,
        usage: VertexAttributeUsage,
        value: Vector4<u8>,
    ) -> Result<(), VertexFetchError>;
}

impl<'a> VertexReadTrait for VertexViewMut<'a> {
    fn data_layout_ref(&self) -> (&[u8], &[Option<VertexAttribute>]) {
        (self.vertex_data, self.sparse_layout)
    }
}

impl<'a> VertexWriteTrait for VertexViewMut<'a> {
    #[inline(always)]
    fn data_layout_mut(&mut self) -> (&mut [u8], &[Option<VertexAttribute>]) {
        (self.vertex_data, self.sparse_layout)
    }

    #[inline(always)]
    fn write_2_f32(
        &mut self,
        usage: VertexAttributeUsage,
        value: Vector2<f32>,
    ) -> Result<(), VertexFetchError> {
        let (data, layout) = self.data_layout_mut();
        if let Some(attribute) = layout.get(usage as usize).unwrap() {
            LittleEndian::write_f32(&mut data[(attribute.offset as usize)..], value.x);
            LittleEndian::write_f32(&mut data[(attribute.offset as usize + 4)..], value.y);
            Ok(())
        } else {
            Err(VertexFetchError::NoSuchAttribute(usage))
        }
    }

    #[inline(always)]
    fn write_3_f32(
        &mut self,
        usage: VertexAttributeUsage,
        value: Vector3<f32>,
    ) -> Result<(), VertexFetchError> {
        let (data, layout) = self.data_layout_mut();
        if let Some(attribute) = layout.get(usage as usize).unwrap() {
            LittleEndian::write_f32(&mut data[(attribute.offset as usize)..], value.x);
            LittleEndian::write_f32(&mut data[(attribute.offset as usize + 4)..], value.y);
            LittleEndian::write_f32(&mut data[(attribute.offset as usize + 8)..], value.z);
            Ok(())
        } else {
            Err(VertexFetchError::NoSuchAttribute(usage))
        }
    }

    #[inline(always)]
    fn write_4_f32(
        &mut self,
        usage: VertexAttributeUsage,
        value: Vector4<f32>,
    ) -> Result<(), VertexFetchError> {
        let (data, layout) = self.data_layout_mut();
        if let Some(attribute) = layout.get(usage as usize).unwrap() {
            LittleEndian::write_f32(&mut data[(attribute.offset as usize)..], value.x);
            LittleEndian::write_f32(&mut data[(attribute.offset as usize + 4)..], value.y);
            LittleEndian::write_f32(&mut data[(attribute.offset as usize + 8)..], value.z);
            LittleEndian::write_f32(&mut data[(attribute.offset as usize + 12)..], value.w);
            Ok(())
        } else {
            Err(VertexFetchError::NoSuchAttribute(usage))
        }
    }

    #[inline(always)]
    fn write_4_u8(
        &mut self,
        usage: VertexAttributeUsage,
        value: Vector4<u8>,
    ) -> Result<(), VertexFetchError> {
        let (data, layout) = self.data_layout_mut();
        if let Some(attribute) = layout.get(usage as usize).unwrap() {
            data[attribute.offset as usize] = value.x;
            data[(attribute.offset + 1) as usize] = value.y;
            data[(attribute.offset + 2) as usize] = value.z;
            data[(attribute.offset + 3) as usize] = value.w;
            Ok(())
        } else {
            Err(VertexFetchError::NoSuchAttribute(usage))
        }
    }
}

/// A buffer for data that defines connections between vertices.
#[derive(Visit, Default, Clone, Debug)]
pub struct TriangleBuffer {
    triangles: Vec<TriangleDefinition>,
    modifications_counter: u64,
}

fn calculate_triangle_buffer_hash(triangles: &[TriangleDefinition]) -> u64 {
    let mut hasher = FxHasher::default();
    triangles.hash(&mut hasher);
    hasher.finish()
}

impl TriangleBuffer {
    /// Creates new triangle buffer with given set of triangles.
    pub fn new(triangles: Vec<TriangleDefinition>) -> Self {
        Self {
            triangles,
            modifications_counter: 0,
        }
    }

    /// Creates new ref iterator.
    pub fn iter(&self) -> impl Iterator<Item = &TriangleDefinition> {
        self.triangles.iter()
    }

    /// Returns a ref to inner data with triangles.
    pub fn triangles_ref(&self) -> &[TriangleDefinition] {
        &self.triangles
    }

    /// Sets a new set of triangles.
    pub fn set_triangles(&mut self, triangles: Vec<TriangleDefinition>) {
        self.triangles = triangles;
        self.modifications_counter += 1;
    }

    /// Returns amount of triangles in the buffer.
    pub fn len(&self) -> usize {
        self.triangles.len()
    }

    /// Returns true if the buffer is empty, false - otherwise.
    pub fn is_empty(&self) -> bool {
        self.triangles.is_empty()
    }

    /// Returns the total amount of times the buffer was modified.
    pub fn modifications_count(&self) -> u64 {
        self.modifications_counter
    }

    /// Calculates inner data hash.
    pub fn content_hash(&self) -> u64 {
        calculate_triangle_buffer_hash(&self.triangles)
    }

    /// See VertexBuffer::modify for more info.
    pub fn modify(&mut self) -> TriangleBufferRefMut<'_> {
        TriangleBufferRefMut {
            triangle_buffer: self,
        }
    }
}

impl Index<usize> for TriangleBuffer {
    type Output = TriangleDefinition;

    fn index(&self, index: usize) -> &Self::Output {
        &self.triangles[index]
    }
}

/// See VertexBuffer::modify for more info.
pub struct TriangleBufferRefMut<'a> {
    triangle_buffer: &'a mut TriangleBuffer,
}

impl<'a> Deref for TriangleBufferRefMut<'a> {
    type Target = TriangleBuffer;

    fn deref(&self) -> &Self::Target {
        self.triangle_buffer
    }
}

impl<'a> DerefMut for TriangleBufferRefMut<'a> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.triangle_buffer
    }
}

impl<'a> Drop for TriangleBufferRefMut<'a> {
    fn drop(&mut self) {
        self.triangle_buffer.modifications_counter += 1;
    }
}

impl<'a> TriangleBufferRefMut<'a> {
    /// Returns mutable iterator.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut TriangleDefinition> {
        self.triangles.iter_mut()
    }

    /// Adds new triangle in the buffer.
    pub fn push(&mut self, triangle: TriangleDefinition) {
        self.triangles.push(triangle)
    }

    /// Adds triangles from the given iterator to the current buffer. Offsets each triangle by the
    /// given `offset` value.
    pub fn push_triangles_iter_with_offset(
        &mut self,
        offset: u32,
        triangles: impl Iterator<Item = TriangleDefinition>,
    ) {
        self.triangles.extend(triangles.map(|t| t.add(offset)))
    }

    /// Adds triangles from the given slice to the current buffer.
    pub fn push_triangles(&mut self, triangles: &[TriangleDefinition]) {
        self.triangles.extend_from_slice(triangles)
    }

    /// Adds triangles from the given iterator to the current buffer.
    pub fn push_triangles_iter(&mut self, triangles: impl Iterator<Item = TriangleDefinition>) {
        self.triangles.extend(triangles)
    }

    /// Adds triangles from the given slice to the current buffer. Offsets each triangle by the
    /// given `offset` value.
    pub fn push_triangles_with_offset(&mut self, offset: u32, triangles: &[TriangleDefinition]) {
        self.triangles
            .extend(triangles.iter().map(|t| t.add(offset)))
    }

    /// Clears the buffer.
    pub fn clear(&mut self) {
        self.triangles.clear();
    }
}

impl<'a> Index<usize> for TriangleBufferRefMut<'a> {
    type Output = TriangleDefinition;

    fn index(&self, index: usize) -> &Self::Output {
        &self.triangle_buffer.triangles[index]
    }
}

impl<'a> IndexMut<usize> for TriangleBufferRefMut<'a> {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.triangle_buffer.triangles[index]
    }
}

/// A typed attribute view for a specific vertex attribute in a vertex buffer.
pub struct AttributeViewRef<'a, T> {
    ptr: *const u8,
    stride: usize,
    count: usize,
    phantom: PhantomData<&'a T>,
}

impl<'a, T> AttributeViewRef<'a, T> {
    /// Tries to fetch attribute data at the given index.
    pub fn get(&'a self, i: usize) -> Option<&'a T> {
        if i < self.count {
            Some(unsafe { &*((self.ptr.add(i * self.stride)) as *const T) })
        } else {
            None
        }
    }
}

/// A typed attribute view for a specific vertex attribute in a vertex buffer.
pub struct AttributeViewRefMut<'a, T> {
    ptr: *mut u8,
    stride: usize,
    count: usize,
    phantom: PhantomData<&'a T>,
}

impl<'a, T> AttributeViewRefMut<'a, T> {
    /// Tries to fetch attribute data at the given index.
    pub fn get(&'a self, i: usize) -> Option<&'a mut T> {
        if i < self.count {
            Some(unsafe { &mut *((self.ptr.add(i * self.stride)) as *mut T) })
        } else {
            None
        }
    }
}

#[cfg(test)]
mod test {
    use crate::scene::mesh::buffer::VertexTrait;
    use crate::{
        core::algebra::{Vector2, Vector3, Vector4},
        scene::mesh::buffer::{
            VertexAttributeDataType, VertexAttributeDescriptor, VertexAttributeUsage, VertexBuffer,
            VertexReadTrait,
        },
    };

    #[derive(Clone, Copy, PartialEq, Debug)]
    #[repr(C)]
    struct Vertex {
        position: Vector3<f32>,
        tex_coord: Vector2<f32>,
        second_tex_coord: Vector2<f32>,
        normal: Vector3<f32>,
        tangent: Vector4<f32>,
        bone_weights: Vector4<f32>,
        bone_indices: Vector4<u8>,
    }

    impl VertexTrait for Vertex {
        fn layout() -> &'static [VertexAttributeDescriptor] {
            static LAYOUT: [VertexAttributeDescriptor; 7] = [
                VertexAttributeDescriptor {
                    usage: VertexAttributeUsage::Position,
                    data_type: VertexAttributeDataType::F32,
                    size: 3,
                    divisor: 0,
                    shader_location: 0,
                    normalized: false,
                },
                VertexAttributeDescriptor {
                    usage: VertexAttributeUsage::TexCoord0,
                    data_type: VertexAttributeDataType::F32,
                    size: 2,
                    divisor: 0,
                    shader_location: 1,
                    normalized: false,
                },
                VertexAttributeDescriptor {
                    usage: VertexAttributeUsage::TexCoord1,
                    data_type: VertexAttributeDataType::F32,
                    size: 2,
                    divisor: 0,
                    shader_location: 2,
                    normalized: false,
                },
                VertexAttributeDescriptor {
                    usage: VertexAttributeUsage::Normal,
                    data_type: VertexAttributeDataType::F32,
                    size: 3,
                    divisor: 0,
                    shader_location: 3,
                    normalized: false,
                },
                VertexAttributeDescriptor {
                    usage: VertexAttributeUsage::Tangent,
                    data_type: VertexAttributeDataType::F32,
                    size: 4,
                    divisor: 0,
                    shader_location: 4,
                    normalized: false,
                },
                VertexAttributeDescriptor {
                    usage: VertexAttributeUsage::BoneWeight,
                    data_type: VertexAttributeDataType::F32,
                    size: 4,
                    divisor: 0,
                    shader_location: 5,
                    normalized: false,
                },
                VertexAttributeDescriptor {
                    usage: VertexAttributeUsage::BoneIndices,
                    data_type: VertexAttributeDataType::U8,
                    size: 4,
                    divisor: 0,
                    shader_location: 6,
                    normalized: false,
                },
            ];

            &LAYOUT
        }
    }

    const VERTICES: [Vertex; 3] = [
        Vertex {
            position: Vector3::new(1.0, 2.0, 3.0),
            tex_coord: Vector2::new(0.0, 1.0),
            second_tex_coord: Vector2::new(1.0, 0.0),
            normal: Vector3::new(0.0, 1.0, 0.0),
            tangent: Vector4::new(1.0, 0.0, 0.0, 1.0),
            bone_weights: Vector4::new(0.25, 0.25, 0.25, 0.25),
            bone_indices: Vector4::new(1, 2, 3, 4),
        },
        Vertex {
            position: Vector3::new(3.0, 2.0, 1.0),
            tex_coord: Vector2::new(1.0, 0.0),
            second_tex_coord: Vector2::new(1.0, 0.0),
            normal: Vector3::new(0.0, 1.0, 0.0),
            tangent: Vector4::new(1.0, 0.0, 0.0, 1.0),
            bone_weights: Vector4::new(0.25, 0.25, 0.25, 0.25),
            bone_indices: Vector4::new(1, 2, 3, 4),
        },
        Vertex {
            position: Vector3::new(1.0, 1.0, 1.0),
            tex_coord: Vector2::new(1.0, 1.0),
            second_tex_coord: Vector2::new(1.0, 0.0),
            normal: Vector3::new(0.0, 1.0, 0.0),
            tangent: Vector4::new(1.0, 0.0, 0.0, 1.0),
            bone_weights: Vector4::new(0.25, 0.25, 0.25, 0.25),
            bone_indices: Vector4::new(1, 2, 3, 4),
        },
    ];

    fn test_view_original_equal<T: VertexReadTrait>(view: T, original: &Vertex) {
        assert_eq!(
            view.read_3_f32(VertexAttributeUsage::Position).unwrap(),
            original.position
        );
        assert_eq!(
            view.read_2_f32(VertexAttributeUsage::TexCoord0).unwrap(),
            original.tex_coord
        );
        assert_eq!(
            view.read_2_f32(VertexAttributeUsage::TexCoord1).unwrap(),
            original.second_tex_coord
        );
        assert_eq!(
            view.read_3_f32(VertexAttributeUsage::Normal).unwrap(),
            original.normal
        );
        assert_eq!(
            view.read_4_f32(VertexAttributeUsage::Tangent).unwrap(),
            original.tangent
        );
        assert_eq!(
            view.read_4_f32(VertexAttributeUsage::BoneWeight).unwrap(),
            original.bone_weights
        );
        assert_eq!(
            view.read_4_u8(VertexAttributeUsage::BoneIndices).unwrap(),
            original.bone_indices
        );
    }

    fn create_test_buffer() -> VertexBuffer {
        VertexBuffer::new(VERTICES.len(), VERTICES.to_vec()).unwrap()
    }

    #[test]
    fn test_empty() {
        VertexBuffer::new::<Vertex>(0, vec![]).unwrap();
    }

    #[test]
    fn test_iter() {
        let buffer = create_test_buffer();

        for (view, original) in buffer.iter().zip(VERTICES.iter()) {
            test_view_original_equal(view, original);
        }
    }

    #[test]
    fn test_iter_mut() {
        let mut buffer = create_test_buffer();

        for (view, original) in buffer.modify().iter_mut().zip(VERTICES.iter()) {
            test_view_original_equal(view, original);
        }
    }

    #[test]
    fn test_vertex_duplication() {
        let mut buffer = create_test_buffer();

        buffer.modify().duplicate(0);

        assert_eq!(buffer.vertex_count(), 4);
        assert_eq!(buffer.get(0).unwrap(), buffer.get(3).unwrap())
    }

    #[test]
    fn test_pop_vertex() {
        let mut buffer = create_test_buffer();

        let vertex = buffer.modify().pop_vertex::<Vertex>().unwrap();

        assert_eq!(buffer.vertex_count(), 2);
        assert_eq!(vertex, VERTICES[2]);
    }

    #[test]
    fn test_remove_last_vertex() {
        let mut buffer = create_test_buffer();

        buffer.modify().remove_last_vertex();

        assert_eq!(buffer.vertex_count(), 2);
    }

    #[test]
    fn test_attribute_view() {
        let buffer = create_test_buffer();

        let position_view = buffer
            .attribute_view::<Vector3<f32>>(VertexAttributeUsage::Position)
            .unwrap();

        assert_eq!(position_view.get(0), Some(&Vector3::new(1.0, 2.0, 3.0)));
        assert_eq!(position_view.get(1), Some(&Vector3::new(3.0, 2.0, 1.0)));
        assert_eq!(position_view.get(2), Some(&Vector3::new(1.0, 1.0, 1.0)));

        let uv_view = buffer
            .attribute_view::<Vector2<f32>>(VertexAttributeUsage::TexCoord0)
            .unwrap();

        assert_eq!(uv_view.get(0), Some(&Vector2::new(0.0, 1.0)));
        assert_eq!(uv_view.get(1), Some(&Vector2::new(1.0, 0.0)));
        assert_eq!(uv_view.get(2), Some(&Vector2::new(1.0, 1.0)));
    }

    #[test]
    fn test_add_attribute() {
        let mut buffer = create_test_buffer();

        let fill = Vector2::new(0.25, 0.75);
        let test_index = 1;

        buffer
            .modify()
            .add_attribute(
                VertexAttributeDescriptor {
                    usage: VertexAttributeUsage::TexCoord2,
                    data_type: VertexAttributeDataType::F32,
                    size: 2,
                    divisor: 0,
                    shader_location: 7,
                    normalized: false,
                },
                fill,
            )
            .unwrap();

        #[derive(Clone, Copy, PartialEq, Debug)]
        #[repr(C)]
        struct ExtendedVertex {
            position: Vector3<f32>,
            tex_coord: Vector2<f32>,
            second_tex_coord: Vector2<f32>,
            normal: Vector3<f32>,
            tangent: Vector4<f32>,
            bone_weights: Vector4<f32>,
            bone_indices: Vector4<u8>,
            third_tex_coord: Vector2<f32>, // NEW
        }

        let new_1 = ExtendedVertex {
            position: VERTICES[test_index].position,
            tex_coord: VERTICES[test_index].tex_coord,
            second_tex_coord: VERTICES[test_index].second_tex_coord,
            normal: VERTICES[test_index].normal,
            tangent: VERTICES[test_index].tangent,
            bone_weights: VERTICES[test_index].bone_weights,
            bone_indices: VERTICES[test_index].bone_indices,
            third_tex_coord: fill,
        };

        assert_eq!(
            buffer.vertex_size,
            std::mem::size_of::<ExtendedVertex>() as u8
        );
        let view = buffer.get(test_index).unwrap();
        assert_eq!(
            view.read_3_f32(VertexAttributeUsage::Position).unwrap(),
            new_1.position
        );
        assert_eq!(
            view.read_2_f32(VertexAttributeUsage::TexCoord0).unwrap(),
            new_1.tex_coord
        );
        assert_eq!(
            view.read_2_f32(VertexAttributeUsage::TexCoord1).unwrap(),
            new_1.second_tex_coord
        );
        assert_eq!(
            view.read_2_f32(VertexAttributeUsage::TexCoord2).unwrap(),
            new_1.third_tex_coord
        );
        assert_eq!(
            view.read_3_f32(VertexAttributeUsage::Normal).unwrap(),
            new_1.normal
        );
        assert_eq!(
            view.read_4_f32(VertexAttributeUsage::Tangent).unwrap(),
            new_1.tangent
        );
        assert_eq!(
            view.read_4_f32(VertexAttributeUsage::BoneWeight).unwrap(),
            new_1.bone_weights
        );
        assert_eq!(
            view.read_4_u8(VertexAttributeUsage::BoneIndices).unwrap(),
            new_1.bone_indices
        );
    }
}