fyrox_graphics/
gpu_texture.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
// Copyright (c) 2019-present Dmitry Stepanov and Fyrox Engine contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

//! Texture is an image that used to fill faces to add details to them. It could also be used as a
//! generic and mostly unlimited capacity storage for arbitrary data.

#![warn(missing_docs)]

use crate::{
    core::{color::Color, Downcast},
    error::FrameworkError,
};
use bytemuck::Pod;

/// A kind of GPU texture.
#[derive(Copy, Clone)]
pub enum GpuTextureKind {
    /// 1D texture.
    Line {
        /// Length of the texture.
        length: usize,
    },
    /// 2D texture.
    Rectangle {
        /// Width of the texture.
        width: usize,
        /// Height of the texture.
        height: usize,
    },
    /// Six 2D textures forming a cube.
    Cube {
        /// Width of the texture.
        width: usize,
        /// Height of the texture.
        height: usize,
    },
    /// Volumetric texture that consists of `depth` textures with `width x height` size.
    Volume {
        /// Width of the texture.
        width: usize,
        /// Height of the texture.
        height: usize,
        /// Depth of the texture.
        depth: usize,
    },
}

/// Pixel kind of GPU texture.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum PixelKind {
    /// Floating point 32-bit pixel.
    R32F,
    /// Unsigned integer 32-bit pixel.
    R32UI,
    /// Floating point 16-bit pixel.
    R16F,
    /// Floating point 32-bit depth pixel.
    D32F,
    /// Integer 16-bit depth pixel.
    D16,
    /// Integer 24-bit depth pixel + 8-bit stencil.
    D24S8,
    /// Red, Green, Blue, Alpha; all by 8-bit.
    RGBA8,
    /// Red, Green, Blue, Alpha in sRGB color space; all by 8-bit.
    SRGBA8,
    /// Red, Green, Blue; all by 8-bit.
    RGB8,
    /// Red, Green, Blue in sRGB color space; all by 8-bit.
    SRGB8,
    /// Blue, Green, Red, Alpha; all by 8-bit.
    BGRA8,
    /// Blue, Green, Red; all by 8-bit.
    BGR8,
    /// Red, Green; all by 8-bit.
    RG8,
    /// Luminance, Alpha; all by 8-bit.
    LA8,
    /// Luminance, Alpha; all by 16-bit.
    LA16,
    /// Red, Green; all by 16-bit.
    RG16,
    /// Red, Green; 16-bit.
    R8,
    /// Luminance; 8-bit.
    L8,
    /// Luminance; 16-bit.
    L16,
    /// Red, unsigned integer; 8-bit.
    R8UI,
    /// Red, signed integer; 16-bit.
    R16,
    /// Red, Green, Blue; all by 16-bit.
    RGB16,
    /// Red, Green, Blue, Alpha; all by 8-bit.
    RGBA16,
    /// Compressed S3TC DXT1 RGB.
    DXT1RGB,
    /// Compressed S3TC DXT1 RGBA.
    DXT1RGBA,
    /// Compressed S3TC DXT3 RGBA.
    DXT3RGBA,
    /// Compressed S3TC DXT5 RGBA.
    DXT5RGBA,
    /// Floating-point RGB texture with 32-bit depth.
    RGB32F,
    /// Floating-point RGBA texture with 32-bit depth.
    RGBA32F,
    /// Floating-point RGB texture with 16-bit depth.
    RGB16F,
    /// Floating-point RGBA texture with 16-bit depth.
    RGBA16F,
    /// Compressed R8 texture (RGTC).
    R8RGTC,
    /// Compressed RG8 texture (RGTC).
    RG8RGTC,
    /// Floating-point RGB texture with 11-bit for Red and Green channels, 10-bit for Blue channel.
    R11G11B10F,
    /// Red, Green, Blue (8-bit) + Alpha (2-bit).
    RGB10A2,
}

/// Element kind of pixel.
pub enum PixelElementKind {
    /// Floating-point pixel.
    Float,
    /// Normalized unsigned integer.
    NormalizedUnsignedInteger,
    /// Integer.
    Integer,
    /// Unsigned integer.
    UnsignedInteger,
}

impl PixelKind {
    pub(crate) fn unpack_alignment(self) -> Option<i32> {
        match self {
            Self::RGBA16
            | Self::RGBA16F
            | Self::RGB16
            | Self::RGB16F
            | Self::RGBA32F
            | Self::RGB32F
            | Self::RGBA8
            | Self::SRGBA8
            | Self::BGRA8
            | Self::RG16
            | Self::LA16
            | Self::D24S8
            | Self::D32F
            | Self::R32F
            | Self::R32UI
            | Self::RGB10A2 => Some(4),
            Self::RG8 | Self::LA8 | Self::D16 | Self::R16F | Self::L16 | Self::R16 => Some(2),
            Self::R8
            | Self::L8
            | Self::R8UI
            | Self::SRGB8
            | Self::RGB8
            | Self::BGR8
            | Self::R11G11B10F => Some(1),
            Self::DXT1RGB
            | Self::DXT1RGBA
            | Self::DXT3RGBA
            | Self::DXT5RGBA
            | Self::R8RGTC
            | Self::RG8RGTC => None,
        }
    }

    /// Returns `true` if the pixel kind is compressed, `false` - otherwise.
    pub fn is_compressed(self) -> bool {
        match self {
            Self::DXT1RGB
            | Self::DXT1RGBA
            | Self::DXT3RGBA
            | Self::DXT5RGBA
            | Self::R8RGTC
            | Self::RG8RGTC => true,
            // Explicit match for rest of formats instead of _ will help to not forget
            // to add new entry here.
            Self::RGBA16
            | Self::RGBA16F
            | Self::RGB16
            | Self::RGB16F
            | Self::RGBA8
            | Self::SRGBA8
            | Self::RGB8
            | Self::SRGB8
            | Self::BGRA8
            | Self::BGR8
            | Self::RG16
            | Self::R16
            | Self::D24S8
            | Self::D32F
            | Self::R32F
            | Self::R32UI
            | Self::RG8
            | Self::D16
            | Self::R16F
            | Self::R8
            | Self::R8UI
            | Self::RGB32F
            | Self::RGBA32F
            | Self::R11G11B10F
            | Self::RGB10A2
            | Self::L8
            | Self::LA8
            | Self::L16
            | Self::LA16 => false,
        }
    }

    /// Returns element kind of the pixel.
    pub fn element_kind(self) -> PixelElementKind {
        match self {
            Self::R32F
            | Self::R16F
            | Self::RGB32F
            | Self::RGBA32F
            | Self::RGBA16F
            | Self::RGB16F
            | Self::D32F
            | Self::R11G11B10F => PixelElementKind::Float,
            Self::D16
            | Self::D24S8
            | Self::RGBA8
            | Self::SRGBA8
            | Self::RGB8
            | Self::SRGB8
            | Self::BGRA8
            | Self::BGR8
            | Self::RG8
            | Self::RG16
            | Self::R8
            | Self::R16
            | Self::RGB16
            | Self::RGBA16
            | Self::DXT1RGB
            | Self::DXT1RGBA
            | Self::DXT3RGBA
            | Self::DXT5RGBA
            | Self::R8RGTC
            | Self::RG8RGTC
            | Self::RGB10A2
            | Self::LA8
            | Self::L8
            | Self::LA16
            | Self::L16 => PixelElementKind::NormalizedUnsignedInteger,
            Self::R8UI | Self::R32UI => PixelElementKind::UnsignedInteger,
        }
    }
}

fn ceil_div_4(x: usize) -> usize {
    (x + 3) / 4
}

/// Calculates size in bytes of a volume texture using the given size of the texture and its pixel
/// kind.
pub fn image_3d_size_bytes(
    pixel_kind: PixelKind,
    width: usize,
    height: usize,
    depth: usize,
) -> usize {
    let pixel_count = width * height * depth;
    match pixel_kind {
        PixelKind::RGBA32F => 16 * pixel_count,
        PixelKind::RGB32F => 12 * pixel_count,
        PixelKind::RGBA16 | PixelKind::RGBA16F => 8 * pixel_count,
        PixelKind::RGB16 | PixelKind::RGB16F => 6 * pixel_count,
        PixelKind::RGBA8
        | PixelKind::SRGBA8
        | PixelKind::BGRA8
        | PixelKind::RG16
        | PixelKind::LA16
        | PixelKind::D24S8
        | PixelKind::D32F
        | PixelKind::R32F
        | PixelKind::R32UI
        | PixelKind::R11G11B10F
        | PixelKind::RGB10A2 => 4 * pixel_count,
        PixelKind::RGB8 | PixelKind::SRGB8 | PixelKind::BGR8 => 3 * pixel_count,
        PixelKind::RG8
        | PixelKind::LA8
        | PixelKind::R16
        | PixelKind::L16
        | PixelKind::D16
        | PixelKind::R16F => 2 * pixel_count,
        PixelKind::R8 | PixelKind::L8 | PixelKind::R8UI => pixel_count,
        PixelKind::DXT1RGB | PixelKind::DXT1RGBA | PixelKind::R8RGTC => {
            let block_size = 8;
            ceil_div_4(width) * ceil_div_4(height) * ceil_div_4(depth) * block_size
        }
        PixelKind::DXT3RGBA | PixelKind::DXT5RGBA | PixelKind::RG8RGTC => {
            let block_size = 16;
            ceil_div_4(width) * ceil_div_4(height) * ceil_div_4(depth) * block_size
        }
    }
}

/// Calculates size in bytes of a rectangular texture using the given size of the texture and its pixel
/// kind.
pub fn image_2d_size_bytes(pixel_kind: PixelKind, width: usize, height: usize) -> usize {
    let pixel_count = width * height;
    match pixel_kind {
        PixelKind::RGBA32F => 16 * pixel_count,
        PixelKind::RGB32F => 12 * pixel_count,
        PixelKind::RGBA16 | PixelKind::RGBA16F => 8 * pixel_count,
        PixelKind::RGB16 | PixelKind::RGB16F => 6 * pixel_count,
        PixelKind::RGBA8
        | PixelKind::SRGBA8
        | PixelKind::BGRA8
        | PixelKind::RG16
        | PixelKind::LA16
        | PixelKind::D24S8
        | PixelKind::D32F
        | PixelKind::R32F
        | PixelKind::R32UI
        | PixelKind::R11G11B10F
        | PixelKind::RGB10A2 => 4 * pixel_count,
        PixelKind::RGB8 | PixelKind::SRGB8 | PixelKind::BGR8 => 3 * pixel_count,
        PixelKind::RG8
        | PixelKind::LA8
        | PixelKind::R16
        | PixelKind::L16
        | PixelKind::D16
        | PixelKind::R16F => 2 * pixel_count,
        PixelKind::R8 | PixelKind::L8 | PixelKind::R8UI => pixel_count,
        PixelKind::DXT1RGB | PixelKind::DXT1RGBA | PixelKind::R8RGTC => {
            let block_size = 8;
            ceil_div_4(width) * ceil_div_4(height) * block_size
        }
        PixelKind::DXT3RGBA | PixelKind::DXT5RGBA | PixelKind::RG8RGTC => {
            let block_size = 16;
            ceil_div_4(width) * ceil_div_4(height) * block_size
        }
    }
}

/// Calculates size in bytes of a linear texture using the given size of the texture and its pixel
/// kind.
pub fn image_1d_size_bytes(pixel_kind: PixelKind, length: usize) -> usize {
    match pixel_kind {
        PixelKind::RGBA32F => 16 * length,
        PixelKind::RGB32F => 12 * length,
        PixelKind::RGBA16 | PixelKind::RGBA16F => 8 * length,
        PixelKind::RGB16 | PixelKind::RGB16F => 6 * length,
        PixelKind::RGBA8
        | PixelKind::SRGBA8
        | PixelKind::BGRA8
        | PixelKind::RG16
        | PixelKind::LA16
        | PixelKind::D24S8
        | PixelKind::D32F
        | PixelKind::R32F
        | PixelKind::R32UI
        | PixelKind::R11G11B10F
        | PixelKind::RGB10A2 => 4 * length,
        PixelKind::RGB8 | PixelKind::SRGB8 | PixelKind::BGR8 => 3 * length,
        PixelKind::RG8
        | PixelKind::LA8
        | PixelKind::L16
        | PixelKind::R16
        | PixelKind::D16
        | PixelKind::R16F => 2 * length,
        PixelKind::R8 | PixelKind::L8 | PixelKind::R8UI => length,
        PixelKind::DXT1RGB | PixelKind::DXT1RGBA | PixelKind::R8RGTC => {
            let block_size = 8;
            ceil_div_4(length) * block_size
        }
        PixelKind::DXT3RGBA | PixelKind::DXT5RGBA | PixelKind::RG8RGTC => {
            let block_size = 16;
            ceil_div_4(length) * block_size
        }
    }
}

/// The texture magnification function is used when the pixel being textured maps to an area
/// less than or equal to one texture element.
#[derive(Default, Copy, Clone, PartialOrd, PartialEq, Eq, Hash, Debug)]
#[repr(u32)]
pub enum MagnificationFilter {
    /// Returns the value of the texture element that is nearest to the center of the pixel
    /// being textured.
    Nearest,
    /// Returns the weighted average of the four texture elements that are closest to the
    /// center of the pixel being textured.
    #[default]
    Linear,
}

/// The texture minifying function is used whenever the pixel being textured maps to an area
/// greater than one texture element.
#[derive(Default, Copy, Clone, PartialOrd, PartialEq, Eq, Hash, Debug)]
pub enum MinificationFilter {
    /// Returns the value of the texture element that is nearest to the center of the pixel
    /// being textured.
    Nearest,
    /// Chooses the mipmap that most closely matches the size of the pixel being textured and
    /// uses the Nearest criterion (the texture element nearest to the center of the pixel)
    /// to produce a texture value.
    NearestMipMapNearest,
    /// Chooses the two mipmaps that most closely match the size of the pixel being textured
    /// and uses the Nearest criterion (the texture element nearest to the center of the pixel)
    /// to produce a texture value from each mipmap. The final texture value is a weighted average
    /// of those two values.
    NearestMipMapLinear,
    /// Returns the weighted average of the four texture elements that are closest to the
    /// center of the pixel being textured.
    #[default]
    Linear,
    /// Chooses the mipmap that most closely matches the size of the pixel being textured and
    /// uses the Linear criterion (a weighted average of the four texture elements that are
    /// closest to the center of the pixel) to produce a texture value.
    LinearMipMapNearest,
    /// Chooses the two mipmaps that most closely match the size of the pixel being textured
    /// and uses the Linear criterion (a weighted average of the four texture elements that
    /// are closest to the center of the pixel) to produce a texture value from each mipmap.
    /// The final texture value is a weighted average of those two values.
    LinearMipMapLinear,
}

/// Defines a law of texture coordinate modification.
#[derive(Default, Copy, Clone, Eq, PartialEq, Debug)]
pub enum WrapMode {
    /// Causes the integer part of a coordinate to be ignored; GPU uses only the fractional part,
    /// thereby creating a repeating pattern.
    #[default]
    Repeat,
    /// Causes a coordinates to be clamped to the range, where N is the size of the texture
    /// in the direction of clamping
    ClampToEdge,
    /// Evaluates a coordinates in a similar manner to ClampToEdge. However, in cases where clamping
    /// would have occurred in ClampToEdge mode, the fetched texel data is substituted with the values
    /// specified by border color.
    ClampToBorder,
    /// Causes the coordinate to be set to the fractional part of the texture coordinate if the integer
    /// part of coordinate is even; if the integer part of coordinate is odd, then the coordinate texture
    /// coordinate is set to 1-frac, where frac represents the fractional part of coordinate.
    MirroredRepeat,
    /// Causes a coordinate to be repeated as for MirroredRepeat for one repetition of the texture, at
    /// which point the coordinate to be clamped as in ClampToEdge.
    MirrorClampToEdge,
}

/// Texture coordinate.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum Coordinate {
    /// S coordinate, similar to X axis.
    S,
    /// T coordinate, similar to Y axis.
    T,
    /// R coordinate, similar to Z axis.
    R,
}

/// Face of a cube map.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum CubeMapFace {
    /// +X face.
    PositiveX,
    /// -X face.
    NegativeX,
    /// +Y face.
    PositiveY,
    /// -Y face.
    NegativeY,
    /// +Z face.
    PositiveZ,
    /// -Z face.
    NegativeZ,
}

/// Descriptor of a texture that is used to request textures from a graphics server.
pub struct GpuTextureDescriptor<'a> {
    /// Kind of the texture. See [`GpuTextureKind`] docs for more info.
    pub kind: GpuTextureKind,
    /// Pixel kind of the texture. See [`PixelKind`] docs for more info.
    pub pixel_kind: PixelKind,
    /// Minification filter of the texture. See [`MinificationFilter`] docs for more info.
    pub min_filter: MinificationFilter,
    /// Magnification filter of the texture. See [`MagnificationFilter`] docs for more info.
    pub mag_filter: MagnificationFilter,
    /// Total number of mips in the texture. Texture data must contain at least this number of
    /// mips.
    pub mip_count: usize,
    /// S coordinate wrap mode. See [`WrapMode`] docs for more info.
    pub s_wrap_mode: WrapMode,
    /// T coordinate wrap mode. See [`WrapMode`] docs for more info.
    pub t_wrap_mode: WrapMode,
    /// R coordinate wrap mode. See [`WrapMode`] docs for more info.
    pub r_wrap_mode: WrapMode,
    /// Anisotropy level of the texture. Default is 1.0. Max number is usually depends on the
    /// GPU, but the cap is 16.0 on pretty much any platform. This number should be a power of two.
    pub anisotropy: f32,
    /// Optional data of the texture. If present, then the total number of bytes must match the
    /// required number of bytes defined by the texture kind, pixel kind, mip count.
    pub data: Option<&'a [u8]>,
    /// Specifies the index of the lowest defined mipmap level. Keep in mind, that the texture data
    /// should provide the actual mip map level defined by the provided value, otherwise the
    /// rendering will be incorrect (probably just black on majority of implementations) and glitchy.
    pub base_level: usize,
    /// Sets the index of the highest defined mipmap level. Keep in mind, that the texture data
    /// should provide the actual mip map level defined by the provided value, otherwise the
    /// rendering will be incorrect (probably just black on majority of implementations) and glitchy.
    pub max_level: usize,
    /// Sets the minimum level-of-detail parameter. This floating-point value limits the selection
    /// of highest resolution mipmap (lowest mipmap level). The initial value is -1000.0.
    pub min_lod: f32,
    /// Sets the maximum level-of-detail parameter. This floating-point value limits the selection
    /// of the lowest resolution mipmap (highest mipmap level). The initial value is 1000.0.
    pub max_lod: f32,
    /// Specifies a fixed bias value that is to be added to the level-of-detail parameter for the
    /// texture before texture sampling. The specified value is added to the shader-supplied bias
    /// value (if any) and subsequently clamped into the implementation-defined range
    /// `−bias_max..bias_max`, where `bias_max` is the value that can be fetched from the current
    /// graphics server. The initial value is 0.0.
    pub lod_bias: f32,
}

impl Default for GpuTextureDescriptor<'_> {
    // WARNING: Do NOT change these default values. This will affect a lot of places in the engine
    // and may potentially lead to weird behavior!
    fn default() -> Self {
        Self {
            kind: GpuTextureKind::Rectangle {
                width: 1,
                height: 1,
            },
            pixel_kind: PixelKind::RGBA8,
            min_filter: Default::default(),
            mag_filter: Default::default(),
            mip_count: 1,
            s_wrap_mode: Default::default(),
            t_wrap_mode: Default::default(),
            r_wrap_mode: Default::default(),
            anisotropy: 1.0,
            data: None,
            base_level: 0,
            max_level: 1000,
            min_lod: -1000.0,
            max_lod: 1000.0,
            lod_bias: 0.0,
        }
    }
}

/// Texture is an image that used to fill faces to add details to them. It could also be used as a
/// generic and mostly unlimited capacity storage for arbitrary data.
///
/// In most cases textures are just 2D images, however there are some exclusions to that - for example
/// cube maps, that may be used for environment mapping. Fyrox supports 1D, 2D, 3D and Cube textures.
///
/// ## Example
///
/// ```rust
/// use fyrox_graphics::{
///     error::FrameworkError,
///     gpu_texture::{
///         GpuTexture, GpuTextureDescriptor, GpuTextureKind, MagnificationFilter,
///         MinificationFilter, PixelKind, WrapMode,
///     },
///     server::GraphicsServer,
/// };
/// use std::{cell::RefCell, rc::Rc};
///
/// fn create_texture(
///     server: &dyn GraphicsServer,
/// ) -> Result<Rc<RefCell<dyn GpuTexture>>, FrameworkError> {
///     server.create_texture(GpuTextureDescriptor {
///         kind: GpuTextureKind::Rectangle {
///             width: 1,
///             height: 1,
///         },
///         pixel_kind: PixelKind::RGBA8,
///         min_filter: MinificationFilter::Nearest,
///         mag_filter: MagnificationFilter::Nearest,
///         mip_count: 1,
///         s_wrap_mode: WrapMode::Repeat,
///         t_wrap_mode: WrapMode::Repeat,
///         r_wrap_mode: WrapMode::Repeat,
///         anisotropy: 1.0,
///         // Opaque red pixel.
///         data: Some(&[255, 0, 0, 255]),
///         // Take the defaults for the rest of parameters.
///         ..Default::default()
///     })
/// }
/// ```
pub trait GpuTexture: Downcast {
    /// Max samples for anisotropic filtering. Default value is 16.0 (max). However, real value passed
    /// to GPU will be clamped to maximum supported by current GPU. To disable anisotropic filtering
    /// set this to 1.0. Typical values are 2.0, 4.0, 8.0, 16.0.
    fn set_anisotropy(&mut self, anisotropy: f32);

    /// Returns current anisotropy level.
    fn anisotropy(&self) -> f32;

    /// Sets new minification filter. It is used when texture becomes smaller. See [`MinificationFilter`]
    /// docs for more info.
    fn set_minification_filter(&mut self, min_filter: MinificationFilter);

    /// Returns current minification filter.
    fn minification_filter(&self) -> MinificationFilter;

    /// Sets new magnification filter. It is used when texture is "stretching". See [`MagnificationFilter`]
    /// docs for more info.
    fn set_magnification_filter(&mut self, mag_filter: MagnificationFilter);

    /// Returns current magnification filter.
    fn magnification_filter(&self) -> MagnificationFilter;

    /// Sets new wrap mode for the given coordinate. See [`WrapMode`] for more info.
    fn set_wrap(&mut self, coordinate: Coordinate, wrap: WrapMode);

    /// Returns current wrap mode for the given coordinate.
    fn wrap_mode(&self, coordinate: Coordinate) -> WrapMode;

    /// Sets border color of the texture. Works together with [`WrapMode::ClampToBorder`] and
    /// essentially forces the GPU to use the given color when it tries to read outside the texture
    /// bounds.
    fn set_border_color(&mut self, color: Color);

    /// Sets the new data of the texture. This method is also able to change the kind of the texture
    /// and its pixel kind.
    fn set_data(
        &mut self,
        kind: GpuTextureKind,
        pixel_kind: PixelKind,
        mip_count: usize,
        data: Option<&[u8]>,
    ) -> Result<(), FrameworkError>;

    /// Reads the texture data at the given mip level. This method could block current thread until
    /// the data comes from GPU to CPU side.
    fn get_image(&self, level: usize) -> Vec<u8>;

    /// Reads texture pixels.
    fn read_pixels(&self) -> Vec<u8>;

    /// Returns kind of the texture.
    fn kind(&self) -> GpuTextureKind;

    /// Returns pixel kind of the texture.
    fn pixel_kind(&self) -> PixelKind;

    /// Specifies the index of the lowest defined mipmap level. Keep in mind, that the texture data
    /// should provide the actual mip map level defined by the provided value, otherwise the
    /// rendering will be incorrect (probably just black on majority of implementations) and glitchy.
    fn set_base_level(&mut self, level: usize);

    /// Returns the index of the lowest defined mipmap level.
    fn base_level(&self) -> usize;

    /// Sets the index of the highest defined mipmap level. Keep in mind, that the texture data
    /// should provide the actual mip map level defined by the provided value, otherwise the
    /// rendering will be incorrect (probably just black on majority of implementations) and glitchy.
    fn set_max_level(&mut self, level: usize);

    /// Returns the index of the highest defined mipmap level.
    fn max_level(&self) -> usize;

    /// Sets the minimum level-of-detail parameter. This floating-point value limits the selection
    /// of highest resolution mipmap (lowest mipmap level). The initial value is -1000.0.
    fn set_min_lod(&mut self, min_lod: f32);

    /// Returns the minimum level-of-detail parameter. See [`Self::set_min_lod`] for more info.
    fn min_lod(&self) -> f32;

    /// Sets the maximum level-of-detail parameter. This floating-point value limits the selection
    /// of the lowest resolution mipmap (highest mipmap level). The initial value is 1000.
    fn set_max_lod(&mut self, max_lod: f32);

    /// Returns the maximum level-of-detail parameter. See [`Self::set_max_lod`] for more info.
    fn max_lod(&self) -> f32;

    /// Specifies a fixed bias value that is to be added to the level-of-detail parameter for the
    /// texture before texture sampling. The specified value is added to the shader-supplied bias
    /// value (if any) and subsequently clamped into the implementation-defined range
    /// `−bias_max..bias_max`, where `bias_max` is the value that can be fetched from the current
    /// graphics server. The initial value is 0.0.
    fn set_lod_bias(&mut self, bias: f32);

    /// Returns a fixed bias value that is to be added to the level-of-detail parameter for the
    /// texture before texture sampling. See [`Self::set_lod_bias`] for more info.
    fn lod_bias(&self) -> f32;
}

impl dyn GpuTexture {
    /// Reads the pixels at the given mip level and reinterprets them using the given type.
    pub fn get_image_of_type<T: Pod>(&self, level: usize) -> Vec<T> {
        let mut bytes = self.get_image(level);

        let typed = unsafe {
            Vec::<T>::from_raw_parts(
                bytes.as_mut_ptr() as *mut T,
                bytes.len() / size_of::<T>(),
                bytes.capacity() / size_of::<T>(),
            )
        };

        std::mem::forget(bytes);

        typed
    }

    /// Reads the pixels and reinterprets them using the given type.
    pub fn read_pixels_of_type<T>(&self) -> Vec<T>
    where
        T: Pod,
    {
        let mut bytes = self.read_pixels();
        let typed = unsafe {
            Vec::<T>::from_raw_parts(
                bytes.as_mut_ptr() as *mut T,
                bytes.len() / size_of::<T>(),
                bytes.capacity() / size_of::<T>(),
            )
        };
        std::mem::forget(bytes);
        typed
    }
}