fyrox_core/sstorage.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
// Copyright (c) 2019-present Dmitry Stepanov and Fyrox Engine contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//! Immutable string + immutable string storage. See docs of [`ImmutableString`] and
//! [`ImmutableStringStorage`] for more info.
#![warn(missing_docs)]
use crate::{
parking_lot::Mutex,
uuid_provider,
visitor::{Visit, VisitResult, Visitor},
};
use fxhash::{FxHashMap, FxHasher};
pub use fyrox_core_derive::TypeUuidProvider;
use serde::{Deserialize, Serialize};
use std::{
fmt::{Debug, Display, Formatter},
hash::{Hash, Hasher},
ops::Deref,
sync::Arc,
};
#[derive(Clone, Debug)]
struct State {
string: String,
hash: u64,
}
/// Immutable string is a string with constant content. Immutability gives some nice properties:
///
/// - Address of the string could be used as a hash, which improves hashing performance dramatically
/// and basically making it constant in terms of complexity (O(1))
/// - Equality comparison becomes constant in terms of complexity.
/// - Uniqueness guarantees - means that calling multiple times will allocate memory only once
/// `ImmutableString::new("foo")` and in consecutive calls existing string will be used.
///
/// # Use cases
///
/// Most common use case for immutable strings is hash map keys in performance-critical places.
#[derive(Clone)]
pub struct ImmutableString(Arc<State>);
uuid_provider!(ImmutableString = "452caac1-19f7-43d6-9e33-92c2c9163332");
impl Display for ImmutableString {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.write_str(self.0.string.as_ref())
}
}
impl Debug for ImmutableString {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
Debug::fmt(&self.0.string, f)
}
}
impl Visit for ImmutableString {
fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
// Serialize/deserialize as ordinary string.
let mut string = self.0.string.clone();
string.visit(name, visitor)?;
// Deduplicate on deserialization.
if visitor.is_reading() {
*self = SSTORAGE.lock().insert(string);
}
Ok(())
}
}
impl Serialize for ImmutableString {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
serializer.serialize_str(self.as_str())
}
}
impl<'de> Deserialize<'de> for ImmutableString {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
Ok(ImmutableString::new(
deserializer.deserialize_string(ImmutableStringVisitor {})?,
))
}
}
struct ImmutableStringVisitor {}
impl serde::de::Visitor<'_> for ImmutableStringVisitor {
type Value = ImmutableString;
fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(formatter, "a string")
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Ok(ImmutableString::new(v))
}
fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Ok(v.into())
}
}
impl Default for ImmutableString {
fn default() -> Self {
Self::new("")
}
}
impl AsRef<str> for ImmutableString {
fn as_ref(&self) -> &str {
self.deref()
}
}
impl ImmutableString {
/// Creates new immutable string from given string slice.
///
/// # Performance
///
/// This method has amortized O(1) complexity, in worst case (when there is no such string
/// in backing storage) it allocates memory which could lead to complexity defined by current
/// memory allocator.
#[inline]
pub fn new<S: AsRef<str>>(string: S) -> ImmutableString {
SSTORAGE.lock().insert(string)
}
/// Returns unique identifier of the string. Keep in mind that uniqueness is guaranteed only
/// for a single session, uniqueness is not preserved between application runs.
#[inline]
pub fn id(&self) -> u64 {
self.0.hash
}
/// Clones content of inner immutable string to a mutable string.
#[inline]
pub fn to_mutable(&self) -> String {
self.0.string.clone()
}
/// Get a reference to the inner str.
pub fn as_str(&self) -> &str {
self.deref()
}
}
impl From<&str> for ImmutableString {
fn from(value: &str) -> Self {
Self::new(value)
}
}
impl From<String> for ImmutableString {
fn from(value: String) -> Self {
SSTORAGE.lock().insert_owned(value)
}
}
impl From<&String> for ImmutableString {
fn from(value: &String) -> Self {
SSTORAGE.lock().insert(value)
}
}
impl Deref for ImmutableString {
type Target = str;
#[inline]
fn deref(&self) -> &Self::Target {
self.0.string.as_ref()
}
}
impl Hash for ImmutableString {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u64(self.id())
}
}
impl PartialEq for ImmutableString {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.id() == other.id()
}
}
impl Eq for ImmutableString {}
/// Immutable string storage is a backing storage for every immutable string in the application,
/// storage is a singleton. In normal circumstances you should never use it directly.
#[derive(Default)]
pub struct ImmutableStringStorage {
vec: FxHashMap<u64, Arc<State>>,
}
impl ImmutableStringStorage {
#[inline]
fn insert<S: AsRef<str>>(&mut self, string: S) -> ImmutableString {
let mut hasher = FxHasher::default();
string.as_ref().hash(&mut hasher);
let hash = hasher.finish();
if let Some(existing) = self.vec.get(&hash) {
ImmutableString(existing.clone())
} else {
let immutable = Arc::new(State {
string: string.as_ref().to_owned(),
hash,
});
self.vec.insert(hash, immutable.clone());
ImmutableString(immutable)
}
}
/// Insert without copying the given String.
#[inline]
fn insert_owned(&mut self, string: String) -> ImmutableString {
let mut hasher = FxHasher::default();
string.hash(&mut hasher);
let hash = hasher.finish();
if let Some(existing) = self.vec.get(&hash) {
ImmutableString(existing.clone())
} else {
let immutable = Arc::new(State { string, hash });
self.vec.insert(hash, immutable.clone());
ImmutableString(immutable)
}
}
}
impl ImmutableStringStorage {
/// Returns total amount of immutable strings in the storage.
pub fn entry_count() -> usize {
SSTORAGE.lock().vec.len()
}
}
lazy_static! {
static ref SSTORAGE: Arc<Mutex<ImmutableStringStorage>> =
Arc::new(Mutex::new(ImmutableStringStorage::default()));
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_immutable_string_distinctness() {
let a = ImmutableString::new("Foobar");
let b = ImmutableString::new("rabooF");
assert_ne!(a.id(), b.id())
}
#[test]
fn test_immutable_string_uniqueness() {
let a = ImmutableString::new("Foobar");
let b = ImmutableString::new("Foobar");
// All tests share the same ImmutableStringStorage, so there is no way
// to know what this value should be. It depends on the order the test
// are run.
// assert_eq!(ImmutableStringStorage::entry_count(), 2);
assert_eq!(a.id(), b.id())
}
#[test]
fn test_immutable_string_uniqueness_from_owned() {
let a = ImmutableString::new("Foobar");
let b = ImmutableString::from("Foobar".to_owned());
assert_eq!(a.id(), b.id())
}
#[test]
fn visit_for_immutable_string() {
let mut a = ImmutableString::new("Foobar");
let mut visitor = Visitor::default();
assert!(a.visit("name", &mut visitor).is_ok());
}
#[test]
fn debug_for_immutable_string() {
let a = ImmutableString::new("Foobar");
assert_eq!(format!("{a:?}"), "\"Foobar\"");
}
#[test]
fn debug_for_immutable_string_from_owned() {
let a = ImmutableString::from("Foobar".to_owned());
assert_eq!(format!("{a:?}"), "\"Foobar\"");
}
#[test]
fn default_for_immutable_string() {
let a = ImmutableString::default();
assert_eq!(a.0.string, "");
}
#[test]
fn immutable_string_to_mutable() {
let a = ImmutableString::new("Foobar");
assert_eq!(a.to_mutable(), String::from("Foobar"));
}
#[test]
fn deref_for_immutable_string() {
let s = "Foobar";
let a = ImmutableString::new(s);
assert_eq!(a.deref(), s);
}
#[test]
fn eq_for_immutable_string() {
let a = ImmutableString::new("Foobar");
let b = ImmutableString::new("Foobar");
assert!(a == b);
}
}