fyrox_animation/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
//! Animation allows you to change properties of arbitrary objects at runtime using a set of key frames.
//! See [`Animation`] docs for more info.

#![warn(missing_docs)]

use crate::{
    core::{
        algebra::{UnitQuaternion, Vector3},
        math::wrapf,
        pool::{Handle, Pool, Ticket},
        reflect::prelude::*,
        uuid::Uuid,
        visitor::{Visit, VisitResult, Visitor},
    },
    track::Track,
};
use core::ImmutableString;
use fyrox_core::{NameProvider, TypeUuidProvider};
use std::hash::Hash;
use std::{
    collections::VecDeque,
    fmt::Debug,
    ops::{Index, IndexMut, Range},
};

pub use fyrox_core as core;
use fyrox_core::pool::ErasedHandle;
use fyrox_core::uuid::uuid;

pub use pose::{AnimationPose, NodePose};
pub use signal::{AnimationEvent, AnimationSignal};
use value::{nlerp, TrackValue, ValueBinding};

pub mod container;
pub mod machine;
pub mod pose;
pub mod signal;
pub mod spritesheet;
pub mod track;
pub mod value;

/// # Overview
///
/// Animation allows you to change properties of arbitrary entities at runtime using a set of key frames. Animation
/// consists of multiple tracks, where each track is bound to a property of an entity. A track can animate
/// any numeric properties, starting from numbers (including `bool`) end ending by 2/3/4 dimensional vectors.
/// Each component (number, x/y/z/w vector components) is stored in a _parametric curve_ (see
/// [`crate::core::math::curve::Curve`] docs for more info). Every parametric curve contains zero or more _key frames_.
/// Graphically this could be represented like so:
///
/// ```text
///                                          Timeline
///                                             v
///   Time   > |---------------|------------------------------------>
///            |               |
///   Track1 > | node.position |                                     
///            |   X curve     |..1..........5...........10..........
///            |   Y curve     |..2.........-2..................1....  < Curve key frames
///            |   Z curve     |..1..........9......................4
///            |_______________|  
///   Track2   | node.property |                                  
///            | ............  |.....................................
///            | ............  |.....................................
///            | ............  |.....................................
/// ```
///
/// Each key frame is just a real number with interpolation mode. Interpolation mode tells the engine how to
/// calculate intermediate values between key frames. There are three kinds of interpolation used in animations
/// (you can skip "boring math" if you want):
///
/// - **Constant** - intermediate value will be calculated using leftmost value of two. Constant "interpolation" is
/// usually used to create step-like behaviour, the most common case is to "interpolate" two boolean values.
/// - **Linear** - intermediate value will be calculated using linear interpolation `i = left + (right - left) / t`,
/// where `t = (time_position - left) / (right - left)`. `t` is always in `0..1` range. Linear interpolation is usually
/// used to create "straight" transitions between two values.
/// - **Cubic** - intermediate value will be calculated using Hermite cubic spline:
/// `i = (2t^3 - 3t^2 + 1) * left + (t^3 - 2t^2 + t) * left_tangent + (-2t^3 + 3t^2) * right + (t^3 - t^2) * right_tangent`,
/// where `t = (time_position - left) / (right - left)` (`t` is always in `0..1` range), `left_tangent` and `right_tangent`
/// is usually a `tan(angle)`. Cubic interpolation is usually used to create "smooth" transitions between two values.
///
/// # Track binding
///
/// Each track is always bound to a property in a node, either by its name or by a special binding. The name is used to fetch the
/// property using reflection, the special binding is a faster way of fetching built-in properties. It is usually used to animate
/// position, scale and rotation (these are the most common properties available in every scene node).
///
/// # Time slice and looping
///
/// While key frames on the curves can be located at arbitrary position in time, animations usually plays a specific time slice.
/// By default, each animation will play on a given time slice infinitely - it is called _animation looping_, it works in both
/// playback directions.
///
/// # Speed
///
/// You can vary playback speed in wide range, by default every animation has playback speed multiplier set to 1.0. The multiplier
/// tells how faster (>1) or slower (<1) the animation needs to be played. Negative speed multiplier values will reverse playback.
///
/// # Enabling or disabling animations
///
/// Sometimes there's a need to disable/enable an animation or check if it is enabled or not, you can do this by using the pair
/// of respective methods - [`Animation::set_enabled`] and [`Animation::is_enabled`].
///
/// # Signals
///
/// Signal is a named marker on specific time position on the animation timeline. Signal will emit an event if the animation playback
/// time passes signal's position from left-to-right (or vice versa depending on playback direction). Signals are usually used to
/// attach some specific actions to a position in time. For example, you can have a walking animation and you want to emit sounds
/// when character's feet touch ground. In this case you need to add a few signals at times when each foot touches the ground.
/// After that all you need to do is to fetch animation events one-by-one and emit respective sounds. See [`AnimationSignal`] docs
/// for more info and examples.
///
/// # Examples
///
/// Usually, animations are created from the editor or some external tool and then imported in the engine.
/// However, sometimes there's a need for procedural animations. Use the following example code as
/// a guide **only** if you need to create procedural animations:
///
/// ```rust
/// use fyrox_animation::{
///     container::{TrackDataContainer, TrackValueKind},
///     track::Track,
///     value::ValueBinding,
///     Animation,
///     core::{
///         math::curve::{Curve, CurveKey, CurveKeyKind},
///         pool::Handle,
///     },
/// };
/// use fyrox_core::pool::ErasedHandle;
///
/// fn create_animation(target: ErasedHandle) -> Animation<ErasedHandle> {
///     let mut frames_container = TrackDataContainer::new(TrackValueKind::Vector3);
///
///     // We'll animate only X coordinate (at index 0).
///     frames_container.curves_mut()[0] = Curve::from(vec![
///         CurveKey::new(0.5, 2.0, CurveKeyKind::Linear),
///         CurveKey::new(0.75, 1.0, CurveKeyKind::Linear),
///         CurveKey::new(1.0, 3.0, CurveKeyKind::Linear),
///     ]);
///
///     // Create a track that will animated the node using the curve above.
///     let mut track = Track::new(frames_container, ValueBinding::Position);
///     track.set_target(target);
///
///     // Finally create an animation and set its time slice and turn it on.
///     let mut animation = Animation::default();
///     animation.add_track(track);
///     animation.set_time_slice(0.0..1.0);
///     animation.set_enabled(true);
///
///     animation
/// }
///
/// // Create the animation.
/// let mut animation = create_animation(Default::default());
///
/// // Emulate some ticks (like it was updated from the main loop of your game).
/// for _ in 0..10 {
///     animation.tick(1.0 / 60.0);
/// }
/// ```
///
/// The code above creates a simple animation that moves a node along X axis in various ways. The usage of the animation
/// is only for the sake of completeness of the example. In the real games you need to add the animation to an animation
/// player scene node and it will do the job for you.
#[derive(Debug, Reflect, Visit, PartialEq)]
pub struct Animation<T: EntityId> {
    #[visit(optional)]
    name: ImmutableString,
    tracks: Vec<Track<T>>,
    time_position: f32,
    #[visit(optional)]
    time_slice: Range<f32>,
    speed: f32,
    looped: bool,
    enabled: bool,
    signals: Vec<AnimationSignal>,

    #[visit(optional)]
    root_motion_settings: Option<RootMotionSettings<T>>,

    #[reflect(hidden)]
    #[visit(skip)]
    root_motion: Option<RootMotion>,

    // Non-serialized
    #[reflect(hidden)]
    #[visit(skip)]
    pose: AnimationPose<T>,
    // Non-serialized
    #[reflect(hidden)]
    #[visit(skip)]
    events: VecDeque<AnimationEvent>,
}

impl<T: EntityId> TypeUuidProvider for Animation<T> {
    fn type_uuid() -> Uuid {
        uuid!("aade8e9d-e2cf-401d-a4d1-59c6943645f3")
    }
}

/// Identifier of an entity, that can be animated.
pub trait EntityId:
    Default + Copy + Reflect + Visit + PartialEq + Eq + Hash + Debug + Ord + PartialEq + 'static
{
}

impl<T: 'static> EntityId for Handle<T> {}
impl EntityId for ErasedHandle {}

/// Root motion settings. It allows you to set a node (root) from which the motion will be taken
/// as well as filter out some unnecessary parts of the motion (i.e. do not extract motion on
/// Y axis).
#[derive(Default, Debug, Clone, PartialEq, Reflect, Visit)]
pub struct RootMotionSettings<T: EntityId> {
    /// A handle to a node which movement will be extracted and put in root motion field of an animation
    /// to which these settings were set to.
    pub node: T,
    /// Keeps X part of the translational part of the motion.
    pub ignore_x_movement: bool,
    /// Keeps Y part of the translational part of the motion.
    pub ignore_y_movement: bool,
    /// Keeps Z part of the translational part of the motion.
    pub ignore_z_movement: bool,
    /// Keeps rotational part of the motion.
    pub ignore_rotations: bool,
}

/// Motion of a root node of an hierarchy of nodes. It contains relative rotation and translation in local
/// space of the node. To transform this data into velocity and orientation you need to multiply these
/// parts with some global transform, usually with the global transform of the mesh that is being animated.
#[derive(Default, Debug, Clone, PartialEq)]
pub struct RootMotion {
    /// Relative offset between current and a previous frame of an animation.
    pub delta_position: Vector3<f32>,
    /// Relative rotation between current and a previous frame of an animation.
    pub delta_rotation: UnitQuaternion<f32>,

    prev_position: Vector3<f32>,
    prev_rotation: UnitQuaternion<f32>,
}

impl RootMotion {
    /// Blend this motion with some other using `weight` as a proportion.
    pub fn blend_with(&mut self, other: &RootMotion, weight: f32) {
        self.delta_position = self.delta_position.lerp(&other.delta_position, weight);
        self.delta_rotation = nlerp(self.delta_rotation, &other.delta_rotation, weight);
    }
}

impl<T: EntityId> NameProvider for Animation<T> {
    fn name(&self) -> &str {
        &self.name
    }
}

impl<T: EntityId> Clone for Animation<T> {
    fn clone(&self) -> Self {
        Self {
            name: self.name.clone(),
            tracks: self.tracks.clone(),
            speed: self.speed,
            time_position: self.time_position,
            looped: self.looped,
            enabled: self.enabled,
            pose: Default::default(),
            signals: self.signals.clone(),
            root_motion_settings: self.root_motion_settings.clone(),
            events: Default::default(),
            time_slice: self.time_slice.clone(),
            root_motion: self.root_motion.clone(),
        }
    }
}

impl<T: EntityId> Animation<T> {
    /// Sets a new name for the animation. The name then could be used to find the animation in a container.
    pub fn set_name<S: AsRef<str>>(&mut self, name: S) {
        self.name = ImmutableString::new(name);
    }

    /// Returns current name of the animation.
    pub fn name(&self) -> &str {
        self.name.as_ref()
    }

    /// Adds new track to the animation. Animation can have unlimited number of tracks, each track is responsible
    /// for animation of a single scene node.
    pub fn add_track(&mut self, track: Track<T>) {
        self.tracks.push(track);
    }

    /// Removes a track at given index.
    pub fn remove_track(&mut self, index: usize) -> Track<T> {
        self.tracks.remove(index)
    }

    /// Inserts a track at given index.
    pub fn insert_track(&mut self, index: usize, track: Track<T>) {
        self.tracks.insert(index, track)
    }

    /// Removes last track from the list of tracks of the animation.
    pub fn pop_track(&mut self) -> Option<Track<T>> {
        self.tracks.pop()
    }

    /// Calculates new length of the animation based on the content of its tracks. It looks for the most "right"
    /// curve key in all curves of all tracks and treats it as length of the animation. The method could be used
    /// in case if you formed animation from code using just curves and don't know the actual length of the
    /// animation.  
    pub fn fit_length_to_content(&mut self) {
        self.time_slice.start = 0.0;
        for track in self.tracks.iter_mut() {
            if track.time_length() > self.time_slice.end {
                self.time_slice.end = track.time_length();
            }
        }
    }

    /// Returns a reference to tracks container.
    pub fn tracks(&self) -> &[Track<T>] {
        &self.tracks
    }

    /// Sets new time position of the animation. The actual time position the animation will have after the call,
    /// can be different in two reasons:
    ///
    /// - If the animation is looping and the new time position is outside of the time slice of the animation, then
    /// the actual time position will be wrapped to fit the time slice. For example, if you have an animation that has
    /// `0.0..5.0s` time slice and you trying to set `7.5s` position, the actual time position will be `2.5s` (it
    /// wraps the input value on the given time slice).
    /// - If the animation is **not** looping and the new time position is outside of the time slice of the animation,
    /// then the actual time position will be clamped to the time clice of the animation.
    pub fn set_time_position(&mut self, time: f32) -> &mut Self {
        if self.looped {
            self.time_position = wrapf(time, self.time_slice.start, self.time_slice.end);
        } else {
            self.time_position = time.clamp(self.time_slice.start, self.time_slice.end);
        }

        self
    }

    /// Sets new time slice of the animation in seconds. It defines a time interval in which the animation will
    /// be played. Current playback position will be clamped (or wrapped if the animation is looping) to fit to new
    /// bounds.
    pub fn set_time_slice(&mut self, time_slice: Range<f32>) {
        assert!(time_slice.start <= time_slice.end);

        self.time_slice = time_slice;

        // Ensure time position is in given time slice.
        self.set_time_position(self.time_position);
    }

    /// Returns current time slice of the animation.
    pub fn time_slice(&self) -> Range<f32> {
        self.time_slice.clone()
    }

    /// Rewinds the animation to the beginning.
    pub fn rewind(&mut self) -> &mut Self {
        self.set_time_position(self.time_slice.start)
    }

    /// Returns length of the animation in seconds.
    pub fn length(&self) -> f32 {
        self.time_slice.end - self.time_slice.start
    }

    /// Performs a single update tick and calculates an output pose. This method is low level, you should not use it
    /// in normal circumstances - the engine will call it for you.
    pub fn tick(&mut self, dt: f32) {
        self.update_pose();

        let current_time_position = self.time_position();
        let new_time_position = current_time_position + dt * self.speed();

        for signal in self.signals.iter_mut().filter(|s| s.enabled) {
            if self.speed >= 0.0
                && (current_time_position < signal.time && new_time_position >= signal.time)
                || self.speed < 0.0
                    && (current_time_position > signal.time && new_time_position <= signal.time)
            {
                // TODO: Make this configurable.
                if self.events.len() < 32 {
                    self.events.push_back(AnimationEvent {
                        signal_id: signal.id,
                        name: signal.name.clone(),
                    });
                }
            }
        }

        let prev_time_position = current_time_position;

        self.set_time_position(new_time_position);

        self.update_root_motion(prev_time_position);
    }

    fn update_root_motion(&mut self, prev_time_position: f32) {
        fn fetch_position_at_time<T: EntityId>(tracks: &[Track<T>], time: f32) -> Vector3<f32> {
            tracks
                .iter()
                .find(|track| track.binding() == &ValueBinding::Position)
                .and_then(|track| track.fetch(time))
                .and_then(|value| {
                    if let TrackValue::Vector3(position) = value.value {
                        Some(position)
                    } else {
                        None
                    }
                })
                .unwrap_or_default()
        }

        fn fetch_rotation_at_time<T: EntityId>(
            tracks: &[Track<T>],
            time: f32,
        ) -> UnitQuaternion<f32> {
            tracks
                .iter()
                .find(|track| track.binding() == &ValueBinding::Rotation)
                .and_then(|track| track.fetch(time))
                .and_then(|value| {
                    if let TrackValue::UnitQuaternion(rotation) = value.value {
                        Some(rotation)
                    } else {
                        None
                    }
                })
                .unwrap_or_default()
        }

        // If we have root motion enabled, try to extract the actual motion values. We'll take only relative motion
        // here, relative to the previous values.
        if let Some(root_motion_settings) = self.root_motion_settings.as_ref() {
            let prev_root_motion = self.root_motion.clone().unwrap_or_default();

            // Check if we've started another loop cycle.
            let new_loop_cycle_started = self.looped
                && (self.speed > 0.0 && self.time_position < prev_time_position
                    || self.speed < 0.0 && self.time_position > prev_time_position);

            let cycle_start_time = if self.speed > 0.0 {
                self.time_slice.start
            } else {
                self.time_slice.end
            };

            let cycle_end_time = if self.speed > 0.0 {
                self.time_slice.end
            } else {
                self.time_slice.start
            };

            let mut root_motion = RootMotion::default();
            if let Some(root_pose) = self.pose.poses_mut().get_mut(&root_motion_settings.node) {
                for bound_value in root_pose.values.values.iter_mut() {
                    match bound_value.binding {
                        ValueBinding::Position => {
                            if let TrackValue::Vector3(pose_position) = bound_value.value {
                                let delta = if new_loop_cycle_started {
                                    root_motion.prev_position =
                                        fetch_position_at_time(&self.tracks, cycle_start_time);

                                    let end_value =
                                        fetch_position_at_time(&self.tracks, cycle_end_time);

                                    end_value - prev_root_motion.prev_position
                                } else {
                                    root_motion.prev_position = pose_position;
                                    pose_position - prev_root_motion.prev_position
                                };

                                root_motion.delta_position.x =
                                    if root_motion_settings.ignore_x_movement {
                                        0.0
                                    } else {
                                        delta.x
                                    };
                                root_motion.delta_position.y =
                                    if root_motion_settings.ignore_y_movement {
                                        0.0
                                    } else {
                                        delta.y
                                    };
                                root_motion.delta_position.z =
                                    if root_motion_settings.ignore_z_movement {
                                        0.0
                                    } else {
                                        delta.z
                                    };

                                // Reset position so the root won't move.
                                let start_position =
                                    fetch_position_at_time(&self.tracks, self.time_slice.start);

                                bound_value.value = TrackValue::Vector3(Vector3::new(
                                    if root_motion_settings.ignore_x_movement {
                                        pose_position.x
                                    } else {
                                        start_position.x
                                    },
                                    if root_motion_settings.ignore_y_movement {
                                        pose_position.y
                                    } else {
                                        start_position.y
                                    },
                                    if root_motion_settings.ignore_z_movement {
                                        pose_position.z
                                    } else {
                                        start_position.z
                                    },
                                ));
                            }
                        }
                        ValueBinding::Rotation => {
                            if let TrackValue::UnitQuaternion(pose_rotation) = bound_value.value {
                                if !root_motion_settings.ignore_rotations {
                                    if new_loop_cycle_started {
                                        root_motion.prev_rotation =
                                            fetch_rotation_at_time(&self.tracks, cycle_start_time);

                                        let end_value =
                                            fetch_rotation_at_time(&self.tracks, cycle_end_time);

                                        root_motion.delta_rotation =
                                            prev_root_motion.prev_rotation.inverse() * end_value;
                                    } else {
                                        // Compute relative rotation that can be used to "turn" a node later on.
                                        root_motion.delta_rotation =
                                            prev_root_motion.prev_rotation.inverse()
                                                * pose_rotation;
                                        root_motion.prev_rotation = pose_rotation;
                                    }

                                    // Reset rotation so the root won't rotate.
                                    bound_value.value = TrackValue::UnitQuaternion(
                                        fetch_rotation_at_time(&self.tracks, self.time_slice.start),
                                    );
                                }
                            }
                        }
                        _ => (),
                    }
                }
            }
            self.root_motion = Some(root_motion);
        }
    }

    /// Sets new root motion settings.
    pub fn set_root_motion_settings(&mut self, settings: Option<RootMotionSettings<T>>) {
        self.root_motion_settings = settings;
    }

    /// Returns a reference to the root motion settings (if any).
    pub fn root_motion_settings_ref(&self) -> Option<&RootMotionSettings<T>> {
        self.root_motion_settings.as_ref()
    }

    /// Returns a reference to the root motion settings (if any).
    pub fn root_motion_settings_mut(&mut self) -> Option<&mut RootMotionSettings<T>> {
        self.root_motion_settings.as_mut()
    }

    /// Returns a reference to the root motion (if any).
    pub fn root_motion(&self) -> Option<&RootMotion> {
        self.root_motion.as_ref()
    }

    /// Extracts a first event from the events queue of the animation.
    pub fn pop_event(&mut self) -> Option<AnimationEvent> {
        self.events.pop_front()
    }

    /// Returns a reference to inner events queue. It is useful when you need to iterate over the events, but
    /// don't extract them from the queue.
    pub fn events_ref(&self) -> &VecDeque<AnimationEvent> {
        &self.events
    }

    /// Return a mutable reference to inner events queue. Provides you a full controls over animation events,
    /// you can even manually inject events in the queue.
    pub fn events_mut(&mut self) -> &mut VecDeque<AnimationEvent> {
        &mut self.events
    }

    /// Takes the events queue and returns it to the caller, leaving the internal queue empty.
    pub fn take_events(&mut self) -> VecDeque<AnimationEvent> {
        std::mem::take(&mut self.events)
    }

    /// Returns current time position of the animation. The time position is guaranteed to be in the range of
    /// current time slice of the animation.
    pub fn time_position(&self) -> f32 {
        self.time_position
    }

    /// Sets new speed multiplier for the animation. By default it is set to 1.0. Negative values can be used
    /// to play the animation in reverse.
    pub fn set_speed(&mut self, speed: f32) -> &mut Self {
        self.speed = speed;
        self
    }

    /// Returns speed multiplier of the animation.
    pub fn speed(&self) -> f32 {
        self.speed
    }

    /// Enables or disables looping of the animation.
    pub fn set_loop(&mut self, state: bool) -> &mut Self {
        self.looped = state;
        self
    }

    /// Returns `true` if the animation is looping, `false` - otherwise.
    pub fn is_loop(&self) -> bool {
        self.looped
    }

    /// Returns `true` if the animation was played until the end of current time slice of the animation, `false` -
    /// otherwise. Looping animations will always return `false`.
    pub fn has_ended(&self) -> bool {
        !self.looped && (self.time_position - self.time_slice.end).abs() <= f32::EPSILON
    }

    /// Enables or disables the animation, disabled animations does not updated and their output pose will remain
    /// the same. By default every animation is enabled.
    pub fn set_enabled(&mut self, enabled: bool) -> &mut Self {
        self.enabled = enabled;
        self
    }

    /// Returns `true` if the animation is enabled, `false` - otherwise.
    pub fn is_enabled(&self) -> bool {
        self.enabled
    }

    /// Returns a mutable reference to the track container.
    pub fn tracks_mut(&mut self) -> &mut [Track<T>] {
        &mut self.tracks
    }

    /// Adds a new animation signal to the animation. See [`AnimationSignal`] docs for more info and examples.
    pub fn add_signal(&mut self, signal: AnimationSignal) -> &mut Self {
        self.signals.push(signal);
        self
    }

    /// Removes last animation signal from the container of the animation.
    pub fn pop_signal(&mut self) -> Option<AnimationSignal> {
        self.signals.pop()
    }

    /// Inserts a new animation signal at given position.
    pub fn insert_signal(&mut self, index: usize, signal: AnimationSignal) {
        self.signals.insert(index, signal)
    }

    /// Removes an animation signal at given index.
    pub fn remove_signal(&mut self, index: usize) -> AnimationSignal {
        self.signals.remove(index)
    }

    /// Returns a reference to the animation signals container.
    pub fn signals(&self) -> &[AnimationSignal] {
        &self.signals
    }

    /// Returns a mutable reference to the inner animation signals container, allowing you to modify the signals.
    pub fn signals_mut(&mut self) -> &mut [AnimationSignal] {
        &mut self.signals
    }

    /// Removes all tracks from the animation for which the given `filter` closure returns `false`. Could be useful
    /// to remove undesired animation tracks.
    pub fn retain_tracks<F>(&mut self, filter: F)
    where
        F: FnMut(&Track<T>) -> bool,
    {
        self.tracks.retain(filter)
    }

    /// Tries to find all tracks that refer to a given node and enables or disables them.
    pub fn set_node_track_enabled(&mut self, handle: T, enabled: bool) {
        for track in self.tracks.iter_mut() {
            if track.target() == handle {
                track.set_enabled(enabled);
            }
        }
    }

    /// Returns an iterator that yields a number of references to tracks that refer to a given node.
    pub fn tracks_of(&self, handle: T) -> impl Iterator<Item = &Track<T>> {
        self.tracks
            .iter()
            .filter(move |track| track.target() == handle)
    }

    /// Returns an iterator that yields a number of references to tracks that refer to a given node.
    pub fn tracks_of_mut(&mut self, handle: T) -> impl Iterator<Item = &mut Track<T>> {
        self.tracks
            .iter_mut()
            .filter(move |track| track.target() == handle)
    }

    /// Tries to find a layer by its name. Returns index of the signal and its reference.
    #[inline]
    pub fn find_signal_by_name_ref<S: AsRef<str>>(
        &self,
        name: S,
    ) -> Option<(usize, &AnimationSignal)> {
        core::find_by_name_ref(self.signals.iter().enumerate(), name)
    }

    /// Tries to find a signal by its name. Returns index of the signal and its reference.
    #[inline]
    pub fn find_signal_by_name_mut<S: AsRef<str>>(
        &mut self,
        name: S,
    ) -> Option<(usize, &mut AnimationSignal)> {
        core::find_by_name_mut(self.signals.iter_mut().enumerate(), name)
    }

    /// Returns `true` if there's a signal with given name and id.
    #[inline]
    pub fn has_signal<S: AsRef<str>>(&self, name: S, id: Uuid) -> bool {
        self.find_signal_by_name_ref(name)
            .map_or(false, |(_, s)| s.id == id)
    }

    /// Removes all tracks from the animation.
    pub fn remove_tracks(&mut self) {
        self.tracks.clear();
    }

    fn update_pose(&mut self) {
        self.pose.reset();
        for track in self.tracks.iter() {
            if track.is_enabled() {
                if let Some(bound_value) = track.fetch(self.time_position) {
                    self.pose.add_to_node_pose(track.target(), bound_value);
                }
            }
        }
    }

    /// Returns current pose of the animation (a final result that can be applied to a scene graph).
    pub fn pose(&self) -> &AnimationPose<T> {
        &self.pose
    }
}

impl<T: EntityId> Default for Animation<T> {
    fn default() -> Self {
        Self {
            name: Default::default(),
            tracks: Vec::new(),
            speed: 1.0,
            time_position: 0.0,
            enabled: true,
            looped: true,
            pose: Default::default(),
            signals: Default::default(),
            root_motion_settings: None,
            events: Default::default(),
            time_slice: Default::default(),
            root_motion: None,
        }
    }
}

/// A container for animations. It is a tiny wrapper around [`Pool`], you should never create the container yourself,
/// it is managed by the engine.
#[derive(Debug, Clone, Reflect, PartialEq)]
pub struct AnimationContainer<T: EntityId> {
    pool: Pool<Animation<T>>,
}

impl<T: EntityId> Default for AnimationContainer<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: EntityId> AnimationContainer<T> {
    /// Creates an empty animation container.
    pub fn new() -> Self {
        Self { pool: Pool::new() }
    }

    /// Returns a total amount of animations in the container.
    #[inline]
    pub fn alive_count(&self) -> u32 {
        self.pool.alive_count()
    }

    /// Returns an iterator yielding a references to animations in the container.
    #[inline]
    pub fn iter(&self) -> impl Iterator<Item = &Animation<T>> {
        self.pool.iter()
    }

    /// Returns an iterator yielding a pair (handle, reference) to animations in the container.
    #[inline]
    pub fn pair_iter(&self) -> impl Iterator<Item = (Handle<Animation<T>>, &Animation<T>)> {
        self.pool.pair_iter()
    }

    /// Returns an iterator yielding a pair (handle, reference) to animations in the container.
    #[inline]
    pub fn pair_iter_mut(
        &mut self,
    ) -> impl Iterator<Item = (Handle<Animation<T>>, &mut Animation<T>)> {
        self.pool.pair_iter_mut()
    }

    /// Returns an iterator yielding a references to animations in the container.
    #[inline]
    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut Animation<T>> {
        self.pool.iter_mut()
    }

    /// Adds a new animation to the container and returns its handle.
    #[inline]
    pub fn add(&mut self, animation: Animation<T>) -> Handle<Animation<T>> {
        self.pool.spawn(animation)
    }

    /// Tries to remove an animation from the container by its handle.
    #[inline]
    pub fn remove(&mut self, handle: Handle<Animation<T>>) -> Option<Animation<T>> {
        self.pool.try_free(handle)
    }

    /// Extracts animation from container and reserves its handle. It is used to temporarily take
    /// ownership over animation, and then put animation back using given ticket.
    pub fn take_reserve(
        &mut self,
        handle: Handle<Animation<T>>,
    ) -> (Ticket<Animation<T>>, Animation<T>) {
        self.pool.take_reserve(handle)
    }

    /// Puts animation back by given ticket.
    pub fn put_back(
        &mut self,
        ticket: Ticket<Animation<T>>,
        animation: Animation<T>,
    ) -> Handle<Animation<T>> {
        self.pool.put_back(ticket, animation)
    }

    /// Makes animation handle vacant again.
    pub fn forget_ticket(&mut self, ticket: Ticket<Animation<T>>) {
        self.pool.forget_ticket(ticket)
    }

    /// Removes all animations.
    #[inline]
    pub fn clear(&mut self) {
        self.pool.clear()
    }

    /// Tries to borrow a reference to an animation in the container. Panics if the handle is invalid.
    #[inline]
    pub fn get(&self, handle: Handle<Animation<T>>) -> &Animation<T> {
        self.pool.borrow(handle)
    }

    /// Tries to borrow a mutable reference to an animation in the container. Panics if the handle is invalid.
    #[inline]
    pub fn get_mut(&mut self, handle: Handle<Animation<T>>) -> &mut Animation<T> {
        self.pool.borrow_mut(handle)
    }

    /// Tries to borrow a reference to an animation in the container.
    #[inline]
    pub fn try_get(&self, handle: Handle<Animation<T>>) -> Option<&Animation<T>> {
        self.pool.try_borrow(handle)
    }

    /// Tries to borrow a mutable reference to an animation in the container.
    #[inline]
    pub fn try_get_mut(&mut self, handle: Handle<Animation<T>>) -> Option<&mut Animation<T>> {
        self.pool.try_borrow_mut(handle)
    }

    /// Tries to find an animation by its name in the container.
    #[inline]
    pub fn find_by_name_ref<S: AsRef<str>>(
        &self,
        name: S,
    ) -> Option<(Handle<Animation<T>>, &Animation<T>)> {
        core::find_by_name_ref(self.pool.pair_iter(), name)
    }

    /// Tries to find an animation by its name in the container.
    #[inline]
    pub fn find_by_name_mut<S: AsRef<str>>(
        &mut self,
        name: S,
    ) -> Option<(Handle<Animation<T>>, &mut Animation<T>)> {
        core::find_by_name_mut(self.pool.pair_iter_mut(), name)
    }

    /// Removes every animation from the container that does not satisfy a particular condition represented by the given
    /// closue.
    #[inline]
    pub fn retain<P>(&mut self, pred: P)
    where
        P: FnMut(&Animation<T>) -> bool,
    {
        self.pool.retain(pred)
    }

    /// Removes queued animation events from every animation in the container.
    ///
    /// # Potential use cases
    ///
    /// Sometimes there is a need to use animation events only from one frame, in this case you should clear events each frame.
    /// This situation might come up when you have multiple animations with signals, but at each frame not every event gets
    /// processed. This might result in unwanted side effects, like multiple attack events may result in huge damage in a single
    /// frame.
    pub fn clear_animation_events(&mut self) {
        for animation in self.pool.iter_mut() {
            animation.events.clear();
        }
    }
}

impl<T: EntityId> Visit for AnimationContainer<T> {
    fn visit(&mut self, name: &str, visitor: &mut Visitor) -> VisitResult {
        if visitor.is_reading() && self.pool.get_capacity() != 0 {
            panic!("Animation pool must be empty on load!");
        }

        let mut region = visitor.enter_region(name)?;

        self.pool.visit("Pool", &mut region)?;

        Ok(())
    }
}

impl<T: EntityId> Index<Handle<Animation<T>>> for AnimationContainer<T> {
    type Output = Animation<T>;

    fn index(&self, index: Handle<Animation<T>>) -> &Self::Output {
        &self.pool[index]
    }
}

impl<T: EntityId> IndexMut<Handle<Animation<T>>> for AnimationContainer<T> {
    fn index_mut(&mut self, index: Handle<Animation<T>>) -> &mut Self::Output {
        &mut self.pool[index]
    }
}