1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
// Copyright 2019-2022 ChainSafe Systems
// SPDX-License-Identifier: Apache-2.0, MIT
//! # RLE+ Bitset Encoding
//!
//! (from https://github.com/filecoin-project/specs/blob/master/src/listings/data_structures.md)
//!
//! RLE+ is a lossless compression format based on [RLE](https://en.wikipedia.org/wiki/Run-length_encoding).
//! Its primary goal is to reduce the size in the case of many individual bits, where RLE breaks down quickly,
//! while keeping the same level of compression for large sets of contiguous bits.
//!
//! In tests it has shown to be more compact than RLE iteself, as well as [Concise](https://arxiv.org/pdf/1004.0403.pdf) and [Roaring](https://roaringbitmap.org/).
//!
//! ## Format
//!
//! The format consists of a header, followed by a series of blocks, of which there are three different types.
//!
//! The format can be expressed as the following [BNF](https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form) grammar.
//!
//! ```text
//! <encoding> ::= <header> <blocks>
//! <header> ::= <version> <bit>
//! <version> ::= "00"
//! <blocks> ::= <block> <blocks> | ""
//! <block> ::= <block_single> | <block_short> | <block_long>
//! <block_single> ::= "1"
//! <block_short> ::= "01" <bit> <bit> <bit> <bit>
//! <block_long> ::= "00" <unsigned_varint>
//! <bit> ::= "0" | "1"
//! ```
//!
//! An `<unsigned_varint>` is defined as specified [here](https://github.com/multiformats/unsigned-varint).
//!
//! ### Header
//!
//! The header indiciates the very first bit of the bit vector to encode. This means the first bit is always
//! the same for the encoded and non encoded form.
//!
//! ### Blocks
//!
//! The blocks represent how many bits, of the current bit type there are. As `0` and `1` alternate in a bit vector
//! the inital bit, which is stored in the header, is enough to determine if a length is currently referencing
//! a set of `0`s, or `1`s.
//!
//! #### Block Single
//!
//! If the running length of the current bit is only `1`, it is encoded as a single set bit.
//!
//! #### Block Short
//!
//! If the running length is less than `16`, it can be encoded into up to four bits, which a short block
//! represents. The length is encoded into a 4 bits, and prefixed with `01`, to indicate a short block.
//!
//! #### Block Long
//!
//! If the running length is `16` or larger, it is encoded into a varint, and then prefixed with `00` to indicate
//! a long block.
//!
//!
//! > **Note:** The encoding is unique, so no matter which algorithm for encoding is used, it should produce
//! > the same encoding, given the same input.
//!
mod reader;
mod writer;
use std::borrow::Cow;
pub use reader::BitReader;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
pub use writer::BitWriter;
use super::{BitField, Result};
use crate::RangeSize;
// MaxEncodedSize is the maximum encoded size of a bitfield. When expanded into
// a slice of runs, a bitfield of this size should not exceed 2MiB of memory.
//
// This bitfield can fit at least 3072 sparse elements.
const MAX_ENCODED_SIZE: usize = 32 << 10;
impl Serialize for BitField {
fn serialize<S>(&self, serializer: S) -> std::result::Result<S::Ok, S::Error>
where
S: Serializer,
{
let bytes = self.to_bytes();
if bytes.len() > MAX_ENCODED_SIZE {
return Err(serde::ser::Error::custom(format!(
"encoded bitfield was too large {}",
bytes.len()
)));
}
serde_bytes::serialize(&bytes, serializer)
}
}
impl<'de> Deserialize<'de> for BitField {
fn deserialize<D>(deserializer: D) -> std::result::Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let bytes: Cow<'de, [u8]> = serde_bytes::deserialize(deserializer)?;
Self::from_bytes(&bytes).map_err(serde::de::Error::custom)
}
}
impl BitField {
/// Decodes RLE+ encoded bytes into a bit field.
pub fn from_bytes(bytes: &[u8]) -> Result<Self> {
if let Some(value) = bytes.last() {
if *value == 0 {
return Err("not minimally encoded");
}
}
let mut reader = BitReader::new(bytes);
let version = reader.read(2);
if version != 0 {
return Err("incorrect version");
}
let mut next_value = reader.read(1) == 1;
let mut ranges = Vec::new();
let mut index = 0u64;
let mut total_len: u64 = 0;
while let Some(len) = reader.read_len()? {
let (new_total_len, ovf) = total_len.overflowing_add(len);
if ovf {
return Err("RLE+ overflow");
}
total_len = new_total_len;
let start = index;
index += len;
let end = index;
if next_value {
ranges.push(start..end);
}
next_value = !next_value;
}
Ok(Self {
ranges,
..Default::default()
})
}
/// Turns a bit field into its RLE+ encoded form.
pub fn to_bytes(&self) -> Vec<u8> {
let mut iter = self.ranges();
let first_range = match iter.next() {
Some(range) => range,
None => return Default::default(),
};
let mut writer = BitWriter::new();
writer.write(0, 2); // version 00
if first_range.start == 0 {
writer.write(1, 1); // the first bit is a 1
} else {
writer.write(0, 1); // the first bit is a 0
writer.write_len(first_range.start); // the number of leading 0s
}
writer.write_len(first_range.size());
let mut index = first_range.end;
// for each range of 1s we first encode the number of 0s that came prior
// before encoding the number of 1s
for range in iter {
writer.write_len(range.start - index); // zeros
writer.write_len(range.size()); // ones
index = range.end;
}
writer.finish()
}
}
#[cfg(test)]
mod tests {
use rand::{Rng, SeedableRng};
use rand_xorshift::XorShiftRng;
use super::super::{bitfield, ranges_from_bits};
use super::{BitField, BitWriter};
#[test]
fn test() {
for (bits, expected) in vec![
(vec![], Ok(bitfield![])),
(
vec![
1, 0, // incorrect version
1, // starts with 1
0, 1, // fits into 4 bits
0, 0, 0, 1, // 8 - 1
],
Err("incorrect version"),
),
(
vec![
0, 0, // version
1, // starts with 1
0, 1, // fits into 4 bits
0, 0, 0, 1, // 8 - 1
],
Ok(bitfield![1, 1, 1, 1, 1, 1, 1, 1]),
),
(
vec![
0, 0, // version
1, // starts with 1
0, 1, // fits into 4 bits
0, 0, 1, 0, // 4 - 1
1, // 1 - 0
0, 1, // fits into 4 bits
1, 1, 0, 0, // 3 - 1
],
Ok(bitfield![1, 1, 1, 1, 0, 1, 1, 1]),
),
(
vec![
0, 0, // version
1, // starts with 1
0, 0, // does not fit into 4 bits
1, 0, 0, 1, 1, 0, 0, 0, // 25 - 1
],
Ok(bitfield![
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
]),
),
// when a length of 0 is encountered, the rest of the encoded bits should be ignored
(
vec![
0, 0, // version
1, // starts with 1
1, // 1 - 1
0, 1, // fits into 4 bits
0, 0, 0, 0, // 0 - 0
1, // 1 - 1
],
Ok(bitfield![1]),
),
// when a length of 0 is encountered, the rest of the encoded bits should be ignored
(
vec![
0, 0, // version
1, // starts with 1
1, // 1 - 1
0, 0, // fits into a varint
0, 0, 0, 0, 0, 0, 0, 0, // 0 - 0
1, // 1 - 1
],
Ok(bitfield![1]),
),
// when the last byte is zero, this should fail
(
vec![
0, 0, // version
1, // starts with 1
0, 1, // fits into 4 bits
1, 0, 1, // 5 - 1
0, 0, 0, 0, 0, 0, 0, 0,
],
Err("not minimally encoded"),
),
// a valid varint
(
vec![
0, 0, // version
1, // starts with 1
0, 0, // fits into a varint
1, 0, 0, 0, 1, 0, 0, 0, // 17 - 1
0, 0, 0,
],
Ok(bitfield![1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
),
// a varint that is not minimally encoded
(
vec![
0, 0, // version
1, // starts with 1
0, 0, // fits into a varint
1, 1, 0, 0, 0, 0, 0, 1, // 3 - 1
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
],
Err("Invalid varint"),
),
// a varint must not take more than 9 bytes
(
vec![
0, 0, // version
1, // starts with 1
0, 0, // fits into a varint
1, 0, 0, 0, 0, 0, 0, 1, // 1 - 1
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
],
Err("Invalid varint"),
),
// total running length should not overflow
(
vec![
0, 0, // version
1, // starts with 1
0, 0, // fits into a varint
1, 1, 1, 1, 1, 1, 1, 1, // 9223372036854775807 - 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, // fits into a varint
1, 1, 1, 1, 1, 1, 1, 1, // 9223372036854775807 - 0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, // fits into 4 bits
0, 1, 0, 0, // 2 - 1
],
Err("RLE+ overflow"),
),
// block_long that could have fit on block_short. TODO: is this legit?
(
vec![
0, 0, // version
1, // starts with 1
0, 0, // fits into a varint
1, 1, 0, 0, 0, 0, 0, 0, // 3 - 1
1, 1, 1,
],
Ok(bitfield![1, 1, 1, 0, 1, 0]),
),
// block_long that could have fit on block_single. TODO: is this legit?
(
vec![
0, 0, // version
1, // starts with 1
0, 0, // fits into a varint
1, 0, 0, 0, 0, 0, 0, 0, // 1 - 1
1, 1, 1,
],
Ok(bitfield![1, 0, 1, 0]),
),
// block_short that could have fit on block_single. TODO: is this legit?
(
vec![
0, 0, // version
1, // starts with 1
0, 1, // fits into 4 bits
1, 0, 0, 0, // 1 - 1
1, 1, 1, 1, 1, 1, 1,
],
Ok(bitfield![1, 0, 1, 0, 1, 0, 1, 0]),
),
] {
let mut writer = BitWriter::new();
for bit in bits {
writer.write(bit, 1);
}
let res = BitField::from_bytes(&writer.finish_test());
assert_eq!(res, expected);
}
}
#[test]
fn roundtrip() {
let mut rng = XorShiftRng::seed_from_u64(1);
for _i in 0..1000 {
let len: u64 = rng.gen_range(0, 1000);
let bits: Vec<_> = (0..len).filter(|_| rng.gen::<bool>()).collect();
let ranges: Vec<_> = ranges_from_bits(bits.clone()).collect();
let bf = BitField::from_ranges(ranges_from_bits(bits));
assert_eq!(bf.ranges().collect::<Vec<_>>(), ranges);
}
}
}