1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#[doc(hidden)]
#[macro_export]
macro_rules! __internal_map_result {
    ($cx:ident, $name:ident = $pat:pat,) => {
        $name.as_mut().poll($cx)
    };
    ($cx:ident, $name:ident = $pat:pat, $($args:tt)+) => {
        $name.as_mut().poll($cx).merge($crate::__internal_map_result!($cx, $($args)+))
    };
}

#[doc(hidden)]
#[macro_export]
macro_rules! __internal_map_pin {
    ($($name:ident = $pat:pat,)+) => {
        $(let mut $name = $name.unsafe_pin();)+
    };
}

#[doc(hidden)]
#[macro_export]
macro_rules! __internal_value_ref {
    ($($name:ident = $pat:pat,)+) => {
        $(let $pat = $name.value_ref();)+
    };
}

#[doc(hidden)]
#[macro_export]
macro_rules! __internal_value_mut {
    ($($name:ident = $pat:pat,)+) => {
        $(let $pat = $name.value_mut();)+
    };
}

#[doc(hidden)]
#[macro_export]
macro_rules! __internal_identifier {
    ($gensym:ident, $macro:ident, { $($bindings:tt)* }, let $name:pat = $value:expr, $($rest:tt)+) => {{
        let mut $gensym = $crate::internal::MapRef1::new($value);

        $crate::__internal_map!($macro, { $($bindings)* $gensym = $name, }, $($rest)+)
    }};

    ($gensym:ident, $macro:ident, { $($bindings:tt)* }, let $name:pat = $value:expr => $($rest:tt)+) => {{
        let mut $gensym = $crate::internal::MapRef1::new($value);

        $crate::__internal_map!($macro, { $($bindings)* $gensym = $name, }, => $($rest)+)
    }};

    ($gensym:ident, $macro:ident, { $($bindings:tt)* }, $name:ident, $($rest:tt)+) => {{
        let mut $gensym = $crate::internal::MapRef1::new($name);

        $crate::__internal_map!($macro, { $($bindings)* $gensym = $name, }, $($rest)+)
    }};

    ($gensym:ident, $macro:ident, { $($bindings:tt)* }, $name:ident => $($rest:tt)+) => {{
        let mut $gensym = $crate::internal::MapRef1::new($name);

        $crate::__internal_map!($macro, { $($bindings)* $gensym = $name, }, => $($rest)+)
    }};
}

#[doc(hidden)]
#[macro_export]
macro_rules! __internal_map {
    // This is only included for backwards compatibility
    // TODO remove in next major version
    ($macro:ident, { $($bindings:tt)* }, => move $f:expr) => {
        $crate::__internal_map!($macro, { $($bindings)* }, => $f)
    };

    ($macro:ident, { $($bindings:tt)* }, => $f:expr) => {
        $crate::internal::MapRefSignal::new(move |cx| {
            $crate::__internal_map_pin!($($bindings)*);

            let result = $crate::__internal_map_result!(cx, $($bindings)+);

            if result.changed {
                $crate::$macro!($($bindings)*);

                ::std::task::Poll::Ready(Some($f))

            } else if result.done {
                ::std::task::Poll::Ready(None)

            } else {
                ::std::task::Poll::Pending
            }
        })
    };

    ($($rest:tt)*) => {
        $crate::__internal_gensym!($crate::__internal_identifier!($($rest)*))
    };
}


/// `map_mut` is exactly the same as `map_ref`, except it gives
/// *mutable* references (`map_ref` gives *immutable* references).
///
/// `map_mut` is almost never useful, so it's recommended to use
/// `map_ref` instead.
#[macro_export]
macro_rules! map_mut {
    ($($input:tt)*) => {
        $crate::__internal_map!(__internal_value_mut, {}, $($input)*)
    };
}


/// The `map_ref` macro can be used to *combine* multiple `Signal`s together:
///
/// ```rust
/// # use futures_signals::map_ref;
/// # use futures_signals::signal::Mutable;
/// # fn main() {
/// #
/// let mutable1 = Mutable::new(1);
/// let mutable2 = Mutable::new(2);
///
/// let output = map_ref! {
///     let value1 = mutable1.signal(),
///     let value2 = mutable2.signal() =>
///     *value1 + *value2
/// };
/// # }
/// ```
///
/// In the above example, `map_ref` takes two input Signals: `mutable1.signal()` and `mutable2.signal()`,
/// and it returns an output Signal.
///
/// When the output Signal is spawned:
///
/// 1. It takes the current value of `mutable1.signal()` and puts it into the `value1` variable.
///
/// 2. It takes the current value of `mutable2.signal()` and puts it into the `value2` variable.
///
/// 3. Then it runs the `*value1 + *value2` code, and puts the result of that code into the output Signal.
///
/// 4. Whenever `mutable1.signal()` or `mutable2.signal()` changes it repeats the above steps.
///
/// So the end result is that `output` always contains the value of `mutable1 + mutable2`.
///
/// So in the above example, `output` will have the value `3` (because it's `1 + 2`).
///
/// But let's say that `mutable1` changes...
///
/// ```rust
/// # use futures_signals::signal::Mutable;
/// # let mutable1 = Mutable::new(1);
/// #
/// mutable1.set(5);
/// ```
///
/// ...then `output` will now have the value `7` (because it's `5 + 2`). And then if `mutable2` changes...
///
/// ```rust
/// # use futures_signals::signal::Mutable;
/// # let mutable2 = Mutable::new(2);
/// #
/// mutable2.set(10);
/// ```
///
/// ...then `output` will now have the value `15` (because it's `5 + 10`).
///
/// If multiple input Signals change at the same time, then it will only update once:
///
/// ```rust
/// # use futures_signals::signal::Mutable;
/// # let mutable1 = Mutable::new(5);
/// # let mutable2 = Mutable::new(10);
/// #
/// mutable1.set(15);
/// mutable2.set(20);
/// ```
///
/// In the above example, `output` will now have the value `35` (because it's `15 + 20`), and it only
/// updates once (***not*** once per input Signal).
///
/// ----
///
/// There is also a shorthand syntax:
///
/// ```rust
/// # use futures_signals::map_ref;
/// # use futures_signals::signal::always;
/// # fn main() {
/// # let signal1 = always(1);
/// # let signal2 = always(2);
/// #
/// let output = map_ref!(signal1, signal2 => *signal1 + *signal2);
/// # }
/// ```
///
/// The above code is exactly the same as this:
///
/// ```rust
/// # use futures_signals::map_ref;
/// # use futures_signals::signal::always;
/// # fn main() {
/// # let signal1 = always(1);
/// # let signal2 = always(2);
/// #
/// let output = map_ref! {
///     let signal1 = signal1,
///     let signal2 = signal2 =>
///     *signal1 + *signal2
/// };
/// # }
/// ```
///
/// This only works if the input Signals are variables. If you want to use expressions for the input
/// Signals then you must either assign them to variables first, or you must use the longer syntax.
///
/// In addition, it's possible to use pattern matching with the longer syntax:
///
/// ```rust
/// # use futures_signals::map_ref;
/// # use futures_signals::signal::always;
/// # fn main() {
/// # struct SomeStruct { foo: u32 }
/// # let signal1 = always((1, 2));
/// # let signal2 = always(SomeStruct { foo: 3 });
/// #
/// let output = map_ref! {
///     let (t1, t2) = signal1,
///     let SomeStruct { foo } = signal2 =>
///     // ...
/// #   ()
/// };
/// # }
/// ```
///
/// It's also possible to combine more than two Signals:
///
/// ```rust
/// # use futures_signals::map_ref;
/// # use futures_signals::signal::Mutable;
/// # fn main() {
/// # let mutable1 = Mutable::new(1);
/// # let mutable2 = Mutable::new(2);
/// # let mutable3 = Mutable::new(3);
/// #
/// let output = map_ref! {
///     let value1 = mutable1.signal(),
///     let value2 = mutable2.signal(),
///     let value3 = mutable3.signal() =>
///     *value1 + *value2 + *value3
/// };
/// # }
/// ```
///
/// You can combine an *infinite* number of Signals, there is no limit.
///
/// However, keep in mind that each input Signal has a small performance cost.
/// The cost is ***very*** small, but it grows linearly with the number of input Signals.
///
/// You shouldn't normally worry about it, just don't put thousands of input Signals
/// into a `map_ref` (this basically *never* happens in practice).
///
/// ----
///
/// You might be wondering why it's called `map_ref`: that's because `value1` and `value2` are *immutable `&` references*
/// to the current values of the input Signals. That's also why you need to use `*value1` and `*value2` to dereference them.
///
/// Why does it use references? Let's say one of the input Signals changes but the other ones haven't changed. In that situation
/// it needs to use the old values for the Signals that didn't change. But because that situation might happen multiple times,
/// it needs to retain ownership of the values, so it can only give out references.
///
/// Rather than giving out references, it could instead have been designed so it always
/// [`clone`](https://doc.rust-lang.org/std/clone/trait.Clone.html#tymethod.clone)s the values, but that's expensive
/// (and it means that it only works with types that implement [`Clone`](https://doc.rust-lang.org/std/clone/trait.Clone.html)).
///
/// Because [`clone`](https://doc.rust-lang.org/std/clone/trait.Clone.html#tymethod.clone) only requires an immutable
/// reference, it's easy to call [`clone`](https://doc.rust-lang.org/std/clone/trait.Clone.html#tymethod.clone) yourself
/// when you need to:
///
/// ```rust
/// # use futures_signals::map_ref;
/// # use futures_signals::signal::Mutable;
/// # fn main() {
/// # let mutable1 = Mutable::new(1);
/// # let mutable2 = Mutable::new(2);
/// #
/// let output = map_ref! {
///     let value1 = mutable1.signal(),
///     let value2 = mutable2.signal() =>
///     value1.clone() + value2.clone()
/// };
/// # }
/// ```
///
/// So because it gives references, you can now manually call [`clone`](https://doc.rust-lang.org/std/clone/trait.Clone.html#tymethod.clone)
/// (or any other `&self` method) *only* when you need to. This improves performance.
///
/// # Performance
///
/// Everything is stack allocated, there are no heap allocations, performance is optimal.
///
/// Because it must poll all of the input Signals, the performance is proportional to the
/// number of Signals. However, polling is ***very*** fast.
#[macro_export]
macro_rules! map_ref {
    ($($input:tt)*) => {
        $crate::__internal_map!(__internal_value_ref, {}, $($input)*)
    };
}