1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
//! Multichannel wave abstraction.
use super::audionode::*;
use super::audiounit::*;
use super::combinator::*;
use super::math::*;
use super::*;
use duplicate::duplicate_item;
use numeric_array::typenum::Unsigned;
use numeric_array::*;
use rsor::Slice;
use std::fs::File;
use std::io::prelude::*;
use std::io::BufWriter;
use std::marker::PhantomData;
use std::path::Path;
use std::sync::Arc;
/// Write a 32-bit value to a WAV file.
#[inline]
fn write32<W: Write>(writer: &mut W, x: u32) -> std::io::Result<()> {
// WAV files are little endian.
writer.write_all(&[x as u8, (x >> 8) as u8, (x >> 16) as u8, (x >> 24) as u8])?;
std::io::Result::Ok(())
}
/// Write a 16-bit value to a WAV file.
#[inline]
fn write16<W: Write>(writer: &mut W, x: u16) -> std::io::Result<()> {
writer.write_all(&[x as u8, (x >> 8) as u8])?;
std::io::Result::Ok(())
}
// Write WAV header, including the header of the data block.
fn write_wav_header<W: Write>(
writer: &mut W,
data_length: usize,
format: u16,
channels: usize,
sample_rate: usize,
) -> std::io::Result<()> {
writer.write_all(b"RIFF")?;
write32(writer, data_length as u32 + 36)?;
writer.write_all(b"WAVE")?;
writer.write_all(b"fmt ")?;
// Length of fmt block.
write32(writer, 16)?;
// Audio data format 1 = WAVE_FORMAT_PCM, 3 = WAVE_FORMAT_IEEE_FLOAT.
write16(writer, format)?;
write16(writer, channels as u16)?;
write32(writer, sample_rate as u32)?;
// Data rate in bytes per second.
let sample_bytes = if format == 1 { 2 } else { 4 };
write32(writer, (sample_rate * channels) as u32 * sample_bytes)?;
// Sample frame length in bytes.
write16(writer, channels as u16 * sample_bytes as u16)?;
// Bits per sample.
write16(writer, sample_bytes as u16 * 8)?;
writer.write_all(b"data")?;
// Length of data block.
write32(writer, data_length as u32)?;
std::io::Result::Ok(())
}
/// Multichannel wave.
#[duplicate_item(
f48 Wave48 AudioUnit48;
[ f64 ] [ Wave64 ] [ AudioUnit64 ];
[ f32 ] [ Wave32 ] [ AudioUnit32 ];
)]
pub struct Wave48 {
/// Vector of channels. Each channel is stored in its own vector.
vec: Vec<Vec<f48>>,
/// Sample rate of the wave.
sr: f64,
/// Length of the wave in samples. This is 0 if there are no channels.
len: usize,
/// Slice of references. This is only allocated if it is used.
slice: Slice<[f48]>,
}
#[duplicate_item(
f48 Wave48 AudioUnit48;
[ f64 ] [ Wave64 ] [ AudioUnit64 ];
[ f32 ] [ Wave32 ] [ AudioUnit32 ];
)]
impl Clone for Wave48 {
fn clone(&self) -> Self {
Self {
vec: self.vec.clone(),
sr: self.sr,
len: self.len,
slice: Slice::new(),
}
}
}
#[allow(clippy::unnecessary_cast)]
#[duplicate_item(
f48 Wave48 AudioUnit48;
[ f64 ] [ Wave64 ] [ AudioUnit64 ];
[ f32 ] [ Wave32 ] [ AudioUnit32 ];
)]
impl Wave48 {
/// Create an empty wave with the specified number of `channels`.
///
/// ### Example: Create Stereo Wave
/// ```
/// use fundsp::hacker::*;
/// let wave = Wave64::new(2, 44100.0);
/// ```
pub fn new(channels: usize, sample_rate: f64) -> Self {
let mut vec = Vec::with_capacity(channels);
for _i in 0..channels {
vec.push(Vec::new());
}
Self {
vec,
sr: sample_rate,
len: 0,
slice: Slice::new(),
}
}
/// Create an empty wave with the given `capacity` in samples
/// and number of `channels`.
///
/// ### Example: Create Stereo Wave
/// ```
/// use fundsp::hacker::*;
/// let wave = Wave64::with_capacity(2, 44100.0, 44100);
/// assert!(wave.channels() == 2 && wave.length() == 0);
/// ```
pub fn with_capacity(channels: usize, sample_rate: f64, capacity: usize) -> Self {
let mut vec = Vec::with_capacity(channels);
for _i in 0..channels {
vec.push(Vec::with_capacity(capacity));
}
Self {
vec,
sr: sample_rate,
len: 0,
slice: Slice::new(),
}
}
/// Create an all-zeros wave with the given `duration` in seconds and number of `channels`.
///
/// ### Example
/// ```
/// use fundsp::hacker32::*;
/// let wave = Wave32::silence(1, 44100.0, 1.0);
/// assert!(wave.duration() == 1.0 && wave.amplitude() == 0.0);
/// ```
pub fn silence(channels: usize, sample_rate: f64, duration: f64) -> Self {
let length = round(duration * sample_rate) as usize;
assert!(channels > 0 || length == 0);
let mut vec = Vec::with_capacity(channels);
for _i in 0..channels {
vec.push(vec![0.0; length]);
}
Self {
vec,
sr: sample_rate,
len: length,
slice: Slice::new(),
}
}
/// Create a mono wave from a slice of samples.
///
/// ### Example
/// ```
/// use fundsp::hacker32::*;
/// let wave = Wave32::from_samples(44100.0, &[0.0; 22050]);
/// assert!(wave.channels() == 1 && wave.duration() == 0.5 && wave.amplitude() == 0.0);
/// ```
pub fn from_samples(sample_rate: f64, samples: &[f48]) -> Self {
Self {
vec: vec![Vec::from(samples)],
sr: sample_rate,
len: samples.len(),
slice: Slice::new(),
}
}
/// Sample rate of this wave.
#[inline]
pub fn sample_rate(&self) -> f64 {
self.sr
}
/// Set the sample rate.
pub fn set_sample_rate(&mut self, sample_rate: f64) {
self.sr = sample_rate;
}
/// Number of channels in this wave.
#[inline]
pub fn channels(&self) -> usize {
self.vec.len()
}
/// Return a reference to the requested channel.
#[inline]
pub fn channel(&self, channel: usize) -> &Vec<f48> {
&self.vec[channel]
}
/// Add a channel to the wave from a slice of samples.
/// The length of the wave and the number of samples must match.
/// If there are no channels yet, then the length of the wave
/// will become the length of the slice.
pub fn push_channel(&mut self, samples: &[f48]) {
assert!(self.channels() == 0 || self.len() == samples.len());
if self.channels() == 0 {
self.len = samples.len();
}
self.vec.push(samples.into());
}
/// Insert a channel to the wave at channel `channel` from a vector of `samples`.
/// The length of the wave and the number of samples must match.
pub fn insert_channel(&mut self, channel: usize, samples: &[f48]) {
assert!(self.channels() == 0 || self.len() == samples.len());
assert!(channel <= self.channels());
if self.channels() == 0 {
self.len = samples.len();
}
self.vec.insert(channel, samples.into());
}
/// Remove channel `channel` from this wave. Returns the removed channel.
pub fn remove_channel(&mut self, channel: usize) -> Vec<f48> {
assert!(channel < self.channels());
self.vec.remove(channel)
}
/// Return a reference to the channels vector as a slice of slices.
pub fn channels_ref(&mut self) -> &[&[f48]] {
self.slice.from_refs(&self.vec)
}
/// Return a mutable reference to the channels vector as a slice of slices.
pub fn channels_mut(&mut self) -> &mut [&mut [f48]] {
self.slice.from_muts(&mut self.vec)
}
/// Sample accessor.
#[inline]
pub fn at(&self, channel: usize, index: usize) -> f48 {
self.vec[channel][index]
}
/// Set sample to value.
#[inline]
pub fn set(&mut self, channel: usize, index: usize, value: f48) {
self.vec[channel][index] = value;
}
/// Insert a new frame of samples to the end of the wave.
/// Pushing a scalar frame, the value is broadcast to any number of channels.
/// Otherwise, the number of channels must match.
///
/// ### Example
/// ```
/// use fundsp::hacker::*;
/// let mut wave = Wave64::new(2, 44100.0);
/// wave.push(0.0);
/// assert!(wave.len() == 1 && wave.amplitude() == 0.0);
/// wave.push((-0.5, 0.5));
/// assert!(wave.len() == 2 && wave.amplitude() == 0.5);
/// ```
#[inline]
pub fn push<T: ConstantFrame<Sample = f48>>(&mut self, frame: T) {
let frame = frame.convert();
if T::Size::USIZE == 1 {
for channel in 0..self.channels() {
self.vec[channel].push(frame[0]);
}
} else {
assert_eq!(self.channels(), T::Size::USIZE);
for channel in 0..self.channels() {
self.vec[channel].push(frame[channel]);
}
}
if self.channels() > 0 {
self.len += 1;
}
}
/// Length of the wave in samples.
#[inline]
pub fn length(&self) -> usize {
self.len
}
/// Length of the wave in samples.
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Returns whether this wave contains no samples.
///
/// ### Example
/// ```
/// use fundsp::hacker::*;
/// let wave = Wave64::new(1, 44100.0);
/// assert!(wave.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Duration of the wave in seconds.
///
/// ### Example
/// ```
/// use fundsp::hacker::*;
/// let wave = Wave64::with_capacity(1, 44100.0, 44100);
/// assert!(wave.duration() == 0.0);
/// ```
#[inline]
pub fn duration(&self) -> f64 {
self.length() as f64 / self.sample_rate()
}
/// Resizes the wave in-place. Any new samples are set to zero.
/// The wave must have a non-zero number of channels.
///
/// ### Example
/// ```
/// use fundsp::hacker::*;
/// let mut wave = Wave64::new(1, 44100.0);
/// wave.resize(44100);
/// assert!(wave.duration() == 1.0 && wave.amplitude() == 0.0);
/// ```
pub fn resize(&mut self, length: usize) {
assert!(self.channels() > 0);
if length != self.length() {
for channel in 0..self.channels() {
self.vec[channel].resize(length, 0.0);
}
}
self.len = length;
}
/// Peak amplitude of the wave. An empty wave has zero amplitude.
///
/// ### Example
/// ```
/// use fundsp::hacker::*;
/// let mut wave = Wave64::render(44100.0, 1.0, &mut (sine_hz(60.0)));
/// let amplitude = wave.amplitude();
/// assert!(amplitude > 1.0 - 1.0e-5 && amplitude <= 1.0);
/// ```
pub fn amplitude(&self) -> f48 {
let mut peak = 0.0;
for channel in 0..self.channels() {
for i in 0..self.len() {
peak = max(peak, abs(self.at(channel, i)));
}
}
peak
}
/// Scales the wave to the range -1..1. Does nothing if the wave is empty.
///
/// ### Example
/// ```
/// use fundsp::hacker::*;
/// let mut wave = Wave64::render(44100.0, 1.0, &mut (sine_hz(60.0)));
/// wave.normalize();
/// assert!(wave.amplitude() == 1.0);
/// ```
pub fn normalize(&mut self) {
let a = self.amplitude();
if a == 0.0 || a == 1.0 {
return;
}
let z = 1.0 / a;
for channel in 0..self.channels() {
for i in 0..self.len() {
self.set(channel, i, self.at(channel, i) * z);
}
}
}
/// Applies a fade-in envelope to the wave with a duration of `time` seconds.
/// The duration may not exceed the duration of the wave.
///
/// ### Example
///
/// ```
/// use fundsp::hacker::*;
/// let mut wave = Wave64::render(44100.0, 10.0, &mut(white()));
/// wave.fade_in(1.0);
/// ```
pub fn fade_in(&mut self, time: f64) {
assert!(time <= self.duration());
let fade_n = round(time * self.sample_rate());
for i in 0..fade_n as usize {
let a = smooth5((i + 1) as f64 / (fade_n + 1.0)) as f48;
for channel in 0..self.channels() {
self.set(channel, i, self.at(channel, i) * a);
}
}
}
/// Applies a fade-out envelope to the wave with a duration of `time` seconds.
/// The duration may not exceed the duration of the wave.
///
/// ### Example
///
/// ```
/// use fundsp::hacker::*;
/// let mut wave = Wave64::render(44100.0, 10.0, &mut(brown() | brown()));
/// wave.fade_out(5.0);
/// ```
pub fn fade_out(&mut self, time: f64) {
assert!(time <= self.duration());
let fade_n = round(time * self.sample_rate());
let fade_i = fade_n as usize;
for i in 0..fade_i {
let a = smooth5((fade_n - i as f64) / (fade_n + 1.0)) as f48;
let sample = self.len() - fade_i + i;
for channel in 0..self.channels() {
self.set(channel, sample, self.at(channel, sample) * a);
}
}
}
/// Applies both fade-in and fade-out to the wave with a duration of `time` seconds.
/// The duration may not exceed the duration of the wave.
///
/// ### Example
///
/// ```
/// use fundsp::hacker::*;
/// let mut wave = Wave64::render(44100.0, 10.0, &mut(pink() | pink()));
/// wave.fade(1.0);
/// ```
pub fn fade(&mut self, time: f64) {
self.fade_in(time);
self.fade_out(time);
}
/// Render wave with length `duration` seconds from generator `node`.
/// Sets the sample rate of `node`.
/// Does not discard pre-delay.
///
/// ### Example: Render 10 Seconds Of Stereo Brown Noise
/// ```
/// use fundsp::hacker32::*;
/// let wave = Wave32::render(44100.0, 10.0, &mut (brown() | brown()));
/// assert!(wave.sample_rate() == 44100.0 && wave.channels() == 2 && wave.duration() == 10.0);
/// ```
pub fn render(sample_rate: f64, duration: f64, node: &mut dyn AudioUnit48) -> Self {
assert_eq!(node.inputs(), 0);
assert!(node.outputs() > 0);
assert!(duration >= 0.0);
node.set_sample_rate(sample_rate);
let length = (duration * sample_rate).round() as usize;
let mut wave = Self::with_capacity(node.outputs(), sample_rate, length);
wave.len = length;
let mut i = 0;
let mut buffer = Self::new(node.outputs(), sample_rate);
let mut reusable_slice = Slice::<[f48]>::with_capacity(node.outputs());
while i < length {
let n = min(length - i, MAX_BUFFER_SIZE);
buffer.resize(n);
node.process(n, &[], reusable_slice.from_muts(&mut buffer.vec));
for channel in 0..node.outputs() {
wave.vec[channel].extend_from_slice(&buffer.vec[channel][..]);
}
i += n;
}
wave
}
/// Render wave with length `duration` seconds from generator `node`.
/// Any pre-delay, as measured by signal latency, is discarded.
/// Resets `node` and sets its sample rate.
///
/// ### Example: Render 10 Seconds Of Square-Like Wave With Look-Ahead Limiter
/// ```
/// use fundsp::hacker32::*;
/// let wave = Wave32::render_latency(44100.0, 10.0, &mut (lfo(|t| (440.0, exp(-t))) >> dsf_square() >> limiter(0.5)));
/// assert!(wave.amplitude() <= 1.0 && wave.duration() == 10.0 && wave.sample_rate() == 44100.0);
/// ```
pub fn render_latency(sample_rate: f64, duration: f64, node: &mut dyn AudioUnit48) -> Self {
assert_eq!(node.inputs(), 0);
assert!(node.outputs() > 0);
assert!(duration >= 0.0);
let latency = node.latency().unwrap_or_default();
// Round latency down to nearest sample.
let latency_samples = floor(latency) as usize;
let latency_duration = latency_samples as f64 / sample_rate;
// Round duration to nearest sample.
let duration_samples = round(duration * sample_rate) as usize;
let duration = duration_samples as f64 / sample_rate;
if latency_samples > 0 {
let latency_wave = Self::render(sample_rate, duration + latency_duration, node);
let mut wave = Self::silence(node.outputs(), sample_rate, duration);
for channel in 0..wave.channels() {
for i in 0..duration_samples {
wave.set(channel, i, latency_wave.at(channel, i + latency_samples));
}
}
wave
} else {
Self::render(sample_rate, duration, node)
}
}
/// Filter this wave with `node` and return the resulting wave.
/// Sets the sample rate of `node`. Does not discard pre-delay.
/// The `node` must have as many inputs as there are channels in this wave.
/// All zeros input is used for the rest of the wave if
/// the duration is greater than the duration of this wave.
///
/// ### Example: Reverberate A Pulse Wave
/// ```
/// use fundsp::hacker32::*;
/// let wave1 = Wave32::render(44100.0, 2.0, &mut (lfo(|t| (220.0, lerp11(0.01, 0.99, sin_hz(0.5, t)))) >> pulse() >> pan(0.0)));
/// assert!(wave1.channels() == 2 && wave1.duration() == 2.0);
/// let wave2 = wave1.filter(3.0, &mut (multipass() & 0.2 * reverb_stereo(10.0, 1.0)));
/// assert!(wave2.channels() == 2 && wave2.duration() == 3.0 && wave2.amplitude() > wave1.amplitude());
/// ```
pub fn filter(&self, duration: f64, node: &mut dyn AudioUnit48) -> Self {
assert_eq!(node.inputs(), self.channels());
assert!(node.outputs() > 0);
assert!(duration >= 0.0);
node.set_sample_rate(self.sample_rate());
let total_length = round(duration * self.sample_rate()) as usize;
let input_length = min(total_length, self.length());
let mut wave = Self::with_capacity(node.outputs(), self.sample_rate(), total_length);
wave.len = total_length;
let mut i = 0;
let mut input_buffer = Self::new(self.channels(), self.sample_rate());
let mut reusable_input_slice = Slice::<[f48]>::with_capacity(self.channels());
let mut output_buffer = Self::new(node.outputs(), self.sample_rate());
let mut reusable_output_slice = Slice::<[f48]>::with_capacity(node.outputs());
// Filter from this wave.
while i < input_length {
let n = min(input_length - i, MAX_BUFFER_SIZE);
input_buffer.resize(n);
output_buffer.resize(n);
for channel in 0..self.channels() {
for j in 0..n {
input_buffer.set(channel, j, self.at(channel, i + j));
}
}
node.process(
n,
reusable_input_slice.from_refs(&input_buffer.vec),
reusable_output_slice.from_muts(&mut output_buffer.vec),
);
for channel in 0..node.outputs() {
wave.vec[channel].extend_from_slice(&output_buffer.vec[channel][..]);
}
i += n;
}
// Filter the rest from a zero input.
if i < total_length {
input_buffer.resize(MAX_BUFFER_SIZE);
for channel in 0..self.channels() {
for j in 0..MAX_BUFFER_SIZE {
input_buffer.set(channel, j, 0.0);
}
}
while i < total_length {
let n = min(total_length - i, MAX_BUFFER_SIZE);
input_buffer.resize(n);
output_buffer.resize(n);
node.process(
n,
reusable_input_slice.from_refs(&input_buffer.vec),
reusable_output_slice.from_muts(&mut output_buffer.vec),
);
for channel in 0..node.outputs() {
wave.vec[channel].extend_from_slice(&output_buffer.vec[channel][..]);
}
i += n;
}
}
wave
}
/// Filter this wave with `node` and return the resulting wave.
/// Any pre-delay, as measured by signal latency, is discarded.
/// Sets the sample rate of `node`.
/// The `node` must have as many inputs as there are channels in this wave.
/// All zeros input is used for the rest of the wave if
/// the `duration` is greater than the duration of this wave.
pub fn filter_latency(&self, duration: f64, node: &mut dyn AudioUnit48) -> Self {
assert_eq!(node.inputs(), self.channels());
assert!(node.outputs() > 0);
assert!(duration >= 0.0);
let latency = node.latency().unwrap_or_default();
// Round latency down to nearest sample.
let latency_samples = floor(latency) as usize;
let latency_duration = latency_samples as f64 / self.sample_rate();
// Round duration to nearest sample.
let duration_samples = round(duration * self.sample_rate()) as usize;
let duration = duration_samples as f64 / self.sample_rate();
if latency_samples > 0 {
let latency_wave = self.filter(duration + latency_duration, node);
let mut wave = Self::silence(node.outputs(), self.sample_rate(), duration);
for channel in 0..wave.channels() {
for i in 0..duration_samples {
wave.set(channel, i, latency_wave.at(channel, i + latency_samples));
}
}
wave
} else {
self.filter(duration, node)
}
}
/// Write the wave as a 16-bit WAV to a buffer.
/// Individual samples are clipped to the range -1...1.
pub fn write_wav16<W: Write>(&self, writer: &mut W) -> std::io::Result<()> {
assert!(self.channels() > 0);
let mut writer = BufWriter::new(writer);
write_wav_header(
&mut writer,
2 * self.channels() * self.length(),
1,
self.channels(),
round(self.sample_rate()) as usize,
)?;
for i in 0..self.length() {
for channel in 0..self.channels() {
let sample = round(clamp11(self.at(channel, i)) * 32767.49);
write16(&mut writer, sample.to_i64() as u16)?;
}
}
std::io::Result::Ok(())
}
/// Write the wave as a 32-bit float WAV to a buffer.
/// Samples are not clipped to any range but some
/// applications may expect the range to be -1...1.
pub fn write_wav32<W: Write>(&self, writer: &mut W) -> std::io::Result<()> {
assert!(self.channels() > 0);
let mut writer = BufWriter::new(writer);
write_wav_header(
&mut writer,
4 * self.channels() * self.length(),
3,
self.channels(),
round(self.sample_rate()) as usize,
)?;
for i in 0..self.length() {
for channel in 0..self.channels() {
let sample = self.at(channel, i);
writer.write_all(&sample.to_f32().to_le_bytes())?;
}
}
std::io::Result::Ok(())
}
/// Save the wave as a 16-bit WAV file.
/// Individual samples are clipped to the range -1...1.
pub fn save_wav16<P: AsRef<Path>>(&self, path: P) -> std::io::Result<()> {
assert!(self.channels() > 0);
let mut file = File::create(path.as_ref())?;
self.write_wav16(&mut file)
}
/// Save the wave as a 32-bit float WAV file.
/// Samples are not clipped to any range but some
/// applications may expect the range to be -1...1.
pub fn save_wav32<P: AsRef<Path>>(&self, path: P) -> std::io::Result<()> {
assert!(self.channels() > 0);
let mut file = File::create(path.as_ref())?;
self.write_wav32(&mut file)
}
}
/// Play back one channel of a wave.
/// - Output 0: wave
#[duplicate_item(
f48 Wave48 Wave48Player;
[ f64 ] [ Wave64 ] [ Wave64Player ];
[ f32 ] [ Wave32 ] [ Wave32Player ];
)]
#[derive(Clone)]
pub struct Wave48Player<T: Float> {
wave: Arc<Wave48>,
channel: usize,
index: usize,
start_point: usize,
end_point: usize,
loop_point: Option<usize>,
_marker: PhantomData<T>,
}
#[duplicate_item(
f48 Wave48 Wave48Player;
[ f64 ] [ Wave64 ] [ Wave64Player ];
[ f32 ] [ Wave32 ] [ Wave32Player ];
)]
impl<T: Float> Wave48Player<T> {
pub fn new(
wave: &Arc<Wave48>,
channel: usize,
start_point: usize,
end_point: usize,
loop_point: Option<usize>,
) -> Self {
assert!(channel < wave.channels());
assert!(end_point <= wave.length());
Self {
wave: wave.clone(),
channel,
index: start_point,
start_point,
end_point,
loop_point,
_marker: PhantomData::default(),
}
}
}
#[duplicate_item(
f48 Wave48 Wave48Player;
[ f64 ] [ Wave64 ] [ Wave64Player ];
[ f32 ] [ Wave32 ] [ Wave32Player ];
)]
impl<T: Float> AudioNode for Wave48Player<T> {
const ID: u64 = 65;
type Sample = T;
type Inputs = typenum::U0;
type Outputs = typenum::U1;
type Setting = ();
fn reset(&mut self) {
self.index = self.start_point;
}
#[inline]
fn tick(
&mut self,
_input: &Frame<Self::Sample, Self::Inputs>,
) -> Frame<Self::Sample, Self::Outputs> {
if self.index < self.end_point {
let value = self.wave.at(self.channel, self.index);
self.index += 1;
if self.index == self.end_point {
if let Some(point) = self.loop_point {
self.index = point;
}
}
[convert(value)].into()
} else {
[T::zero()].into()
}
}
}