1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
use std::{
    cmp::{
        max,
        min,
    },
    num::NonZeroU64,
};

#[cfg(test)]
mod tests;

#[derive(Debug, thiserror::Error, PartialEq)]
pub enum Error {
    #[error("Skipped L2 block update: expected {expected:?}, got {got:?}")]
    SkippedL2Block { expected: u32, got: u32 },
    #[error("Skipped DA block update: expected {expected:?}, got {got:?}")]
    SkippedDABlock { expected: u32, got: u32 },
    #[error("Could not calculate cost per byte: {bytes:?} bytes, {cost:?} cost")]
    CouldNotCalculateCostPerByte { bytes: u64, cost: u64 },
}

/// An algorithm for calculating the gas price for the next block
///
/// The algorithm breaks up the gas price into two components:
/// - The execution gas price, which is used to cover the cost of executing the next block as well
///   as moderating the congestion of the network by increasing the price when traffic is high.
/// - The data availability (DA) gas price, which is used to cover the cost of recording the block on the DA chain
///
/// The execution gas price is calculated eagerly based on the fullness of the last received l2 block. Each
/// block has a capacity threshold, and if the block is above this threshold, the gas price is increased. If
/// it is below the threshold, the gas price is decreased.
/// The gas price can only change by a fixed amount each block.
///
/// The DA gas price is calculated based on the profit of previous blocks. The profit is the
/// difference between the rewards from the DA portion of the gas price and the cost of recording the blocks on the DA chain.
/// The algorithm uses a naive PID controller to calculate the change in the DA gas price. The "P" portion
/// of the new gas price is "proportional" to the profit, either negative or positive. The "D" portion is derived
/// from the slope or change in the profits since the last block.
///
/// if p > 0 and dp/db > 0, decrease
/// if p > 0 and dp/db < 0, hold/moderate
/// if p < 0 and dp/db < 0, increase
/// if p < 0 and dp/db > 0, hold/moderate
///
/// The DA portion also uses a moving average of the profits over the last `avg_window` blocks
/// instead of the actual profit. Setting the `avg_window` to 1 will effectively disable the
/// moving average.
#[derive(Debug, Clone, PartialEq)]
pub struct AlgorithmV1 {
    /// The lowest the algorithm allows the gas price to go
    min_da_gas_price: u64,
    /// The gas price for to cover the execution of the next block
    new_exec_price: u64,
    /// The gas price for the DA portion of the last block. This can be used to calculate
    last_da_price: u64,
    /// The maximum percentage that the DA portion of the gas price can change in a single block
    max_change_percent: u8,
    /// The latest known cost per byte for recording blocks on the DA chain
    latest_da_cost_per_byte: u64,
    /// The cumulative reward from the DA portion of the gas price
    total_rewards: u64,
    /// The cumulative cost of recording L2 blocks on the DA chain as of the last recorded block
    total_costs: u64,
    /// The P component of the PID control for the DA gas price
    da_p_factor: i64,
    /// The D component of the PID control for the DA gas price
    da_d_factor: i64,
    /// The average profit over the last `avg_window` blocks
    avg_profit: i64,
    /// The number of blocks to consider when calculating the average profit
    avg_window: u32,
}

impl AlgorithmV1 {
    pub fn calculate(&self, block_bytes: u64) -> u64 {
        let projected_profit_avg = self.calculate_avg_profit(block_bytes);

        let p = self.p(projected_profit_avg);
        let d = self.d(projected_profit_avg);
        let da_change = self.change(p, d);

        self.assemble_price(da_change)
    }

    fn calculate_avg_profit(&self, block_bytes: u64) -> i64 {
        let extra_for_this_block =
            block_bytes.saturating_mul(self.latest_da_cost_per_byte);
        let pessimistic_cost = self.total_costs.saturating_add(extra_for_this_block);
        let projected_profit =
            (self.total_rewards as i64).saturating_sub(pessimistic_cost as i64);
        projected_profit
            .saturating_add(
                self.avg_profit
                    .saturating_mul((self.avg_window as i64).saturating_sub(1)),
            )
            .checked_div(self.avg_window as i64)
            .unwrap_or(self.avg_profit)
    }

    fn p(&self, projected_profit_avg: i64) -> i64 {
        let checked_p = projected_profit_avg.checked_div(self.da_p_factor);
        checked_p.unwrap_or(0).saturating_mul(-1)
    }

    fn d(&self, projected_profit_avg: i64) -> i64 {
        let slope = projected_profit_avg.saturating_sub(self.avg_profit);
        let checked_d = slope.checked_div(self.da_d_factor);
        checked_d.unwrap_or(0).saturating_mul(-1)
    }

    fn change(&self, p: i64, d: i64) -> i64 {
        let pd_change = p.saturating_add(d);
        let max_change = self
            .last_da_price
            .saturating_mul(self.max_change_percent as u64)
            .saturating_div(100) as i64;
        let sign = pd_change.signum();
        let signless_da_change = min(max_change, pd_change.abs());
        sign.saturating_mul(signless_da_change)
    }

    fn assemble_price(&self, change: i64) -> u64 {
        let last_da_gas_price = self.last_da_price as i64;
        let maybe_new_da_gas_price = last_da_gas_price
            .saturating_add(change)
            .try_into()
            .unwrap_or(self.min_da_gas_price);
        let new_da_gas_price = max(self.min_da_gas_price, maybe_new_da_gas_price);
        self.new_exec_price.saturating_add(new_da_gas_price)
    }
}

/// The state of the algorithm used to update the gas price algorithm for each block
///
/// Because there will always be a delay between blocks submitted to the L2 chain and the blocks
/// being recorded on the DA chain, the updater needs to make "projections" about the cost of
/// recording any given block to the DA chain. This is done by tracking the cost per byte of recording
/// for the most recent blocks, and using the known bytes of the unrecorded blocks to estimate
/// the cost for that block. Every time the DA recording is updated, the projections are recalculated.
///
/// This projection will inevitably lead to error in the gas price calculation. Special care should be taken
/// to account for the worst case scenario when calculating the parameters of the algorithm.
#[derive(serde::Serialize, serde::Deserialize, Debug, Clone, PartialEq)]
pub struct AlgorithmUpdaterV1 {
    /// The gas price to cover the execution of the next block
    pub new_exec_price: u64,
    /// The gas price for the DA portion of the last block. This can be used to calculate
    /// the DA portion of the next block
    pub last_da_gas_price: u64,
    // Execution
    /// The lowest the algorithm allows the exec gas price to go
    pub min_exec_gas_price: u64,
    /// The Percentage the execution gas price will change in a single block, either increase or decrease
    /// based on the fullness of the last L2 block
    pub exec_gas_price_change_percent: u64,
    /// The height of the next L2 block
    pub l2_block_height: u32,
    /// The threshold of gas usage above and below which the gas price will increase or decrease
    /// This is a percentage of the total capacity of the L2 block
    pub l2_block_fullness_threshold_percent: u64,
    // DA
    /// The lowest the algorithm allows the da gas price to go
    pub min_da_gas_price: u64,
    /// The maximum percentage that the DA portion of the gas price can change in a single block
    pub max_da_gas_price_change_percent: u8,
    /// The cumulative reward from the DA portion of the gas price
    pub total_da_rewards: u64,
    /// The height of the las L2 block recorded on the DA chain
    pub da_recorded_block_height: u32,
    /// The cumulative cost of recording L2 blocks on the DA chain as of the last recorded block
    pub latest_known_total_da_cost: u64,
    /// The predicted cost of recording L2 blocks on the DA chain as of the last L2 block
    /// (This value is added on top of the `latest_known_total_da_cost` if the L2 height is higher)
    pub projected_total_da_cost: u64,
    /// The P component of the PID control for the DA gas price
    pub da_p_component: i64,
    /// The D component of the PID control for the DA gas price
    pub da_d_component: i64,
    /// The average profit over the last `avg_window` blocks
    pub profit_avg: i64,
    /// The number of blocks to consider when calculating the average profit
    pub avg_window: u32,
    /// The latest known cost per byte for recording blocks on the DA chain
    pub latest_da_cost_per_byte: u64,
    /// The unrecorded blocks that are used to calculate the projected cost of recording blocks
    pub unrecorded_blocks: Vec<BlockBytes>,
}

#[derive(Debug, Clone)]
pub struct RecordedBlock {
    pub height: u32,
    pub block_bytes: u64,
    pub block_cost: u64,
}

#[derive(serde::Serialize, serde::Deserialize, Debug, Clone, PartialEq)]
pub struct BlockBytes {
    pub height: u32,
    pub block_bytes: u64,
}

impl AlgorithmUpdaterV1 {
    pub fn update_da_record_data(
        &mut self,
        blocks: Vec<RecordedBlock>,
    ) -> Result<(), Error> {
        for block in blocks {
            self.da_block_update(block.height, block.block_bytes, block.block_cost)?;
        }
        self.recalculate_projected_cost();
        Ok(())
    }

    pub fn update_l2_block_data(
        &mut self,
        height: u32,
        used: u64,
        capacity: NonZeroU64,
        block_bytes: u64,
        gas_price: u64,
    ) -> Result<(), Error> {
        let expected = self.l2_block_height.saturating_add(1);
        if height != expected {
            Err(Error::SkippedL2Block {
                expected,
                got: height,
            })
        } else {
            self.l2_block_height = height;
            let last_exec_price = self.new_exec_price;
            let last_profit = (self.total_da_rewards as i64)
                .saturating_sub(self.projected_total_da_cost as i64);
            self.update_profit_avg(last_profit);
            let new_projected_da_cost =
                block_bytes.saturating_mul(self.latest_da_cost_per_byte);
            self.projected_total_da_cost = self
                .projected_total_da_cost
                .saturating_add(new_projected_da_cost);
            // implicitly deduce what our da gas price was for the l2 block
            self.last_da_gas_price = gas_price.saturating_sub(last_exec_price);
            self.update_exec_gas_price(used, capacity);
            let da_reward = used.saturating_mul(self.last_da_gas_price);
            self.total_da_rewards = self.total_da_rewards.saturating_add(da_reward);
            Ok(())
        }
    }

    fn update_profit_avg(&mut self, new_profit: i64) {
        let old_avg = self.profit_avg;
        let new_avg = old_avg
            .saturating_mul((self.avg_window as i64).saturating_sub(1))
            .saturating_add(new_profit)
            .checked_div(self.avg_window as i64)
            .unwrap_or(old_avg);
        self.profit_avg = new_avg;
    }

    fn update_exec_gas_price(&mut self, used: u64, capacity: NonZeroU64) {
        let mut exec_gas_price = self.new_exec_price;
        let fullness_percent = used
            .saturating_mul(100)
            .checked_div(capacity.into())
            .unwrap_or(self.l2_block_fullness_threshold_percent);

        match fullness_percent.cmp(&self.l2_block_fullness_threshold_percent) {
            std::cmp::Ordering::Greater => {
                let change_amount = self.change_amount(exec_gas_price);
                exec_gas_price = exec_gas_price.saturating_add(change_amount);
            }
            std::cmp::Ordering::Less => {
                let change_amount = self.change_amount(exec_gas_price);
                exec_gas_price = exec_gas_price.saturating_sub(change_amount);
            }
            std::cmp::Ordering::Equal => {}
        }
        self.new_exec_price = max(self.min_exec_gas_price, exec_gas_price);
    }

    fn change_amount(&self, principle: u64) -> u64 {
        principle
            .saturating_mul(self.exec_gas_price_change_percent)
            .saturating_div(100)
    }

    fn da_block_update(
        &mut self,
        height: u32,
        block_bytes: u64,
        block_cost: u64,
    ) -> Result<(), Error> {
        let expected = self.da_recorded_block_height.saturating_add(1);
        if height != expected {
            Err(Error::SkippedDABlock {
                expected: self.da_recorded_block_height.saturating_add(1),
                got: height,
            })
        } else {
            let new_cost_per_byte = block_cost.checked_div(block_bytes).ok_or(
                Error::CouldNotCalculateCostPerByte {
                    bytes: block_bytes,
                    cost: block_cost,
                },
            )?;
            self.da_recorded_block_height = height;
            let new_block_cost =
                self.latest_known_total_da_cost.saturating_add(block_cost);
            self.latest_known_total_da_cost = new_block_cost;
            self.latest_da_cost_per_byte = new_cost_per_byte;
            Ok(())
        }
    }

    fn recalculate_projected_cost(&mut self) {
        // remove all blocks that have been recorded
        self.unrecorded_blocks
            .retain(|block| block.height > self.da_recorded_block_height);
        // add the cost of the remaining blocks
        let projection_portion: u64 = self
            .unrecorded_blocks
            .iter()
            .map(|block| {
                block
                    .block_bytes
                    .saturating_mul(self.latest_da_cost_per_byte)
            })
            .sum();
        self.projected_total_da_cost = self
            .latest_known_total_da_cost
            .saturating_add(projection_portion);
    }

    pub fn algorithm(&self) -> AlgorithmV1 {
        AlgorithmV1 {
            min_da_gas_price: self.min_da_gas_price,
            new_exec_price: self.new_exec_price,
            last_da_price: self.last_da_gas_price,
            max_change_percent: self.max_da_gas_price_change_percent,

            latest_da_cost_per_byte: self.latest_da_cost_per_byte,
            total_rewards: self.total_da_rewards,
            total_costs: self.projected_total_da_cost,
            avg_profit: self.profit_avg,
            da_p_factor: self.da_p_component,
            da_d_factor: self.da_d_component,
            avg_window: self.avg_window,
        }
    }
}