1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
use core::cmp;
use core::fmt;
#[cfg(feature = "std")]
use std::collections::hash_map::Entry;
#[cfg(feature = "std")]
use std::collections::{HashMap, HashSet};
use utf8_ranges::{Utf8Range, Utf8Sequences};
use crate::automaton::Automaton;
const DEFAULT_STATE_LIMIT: usize = 10_000; // currently at least 20MB >_<
/// An error that occurred while building a Levenshtein automaton.
///
/// This error is only defined when the `levenshtein` crate feature is enabled.
#[derive(Debug)]
pub enum LevenshteinError {
/// If construction of the automaton reaches some hard-coded limit
/// on the number of states, then this error is returned.
///
/// The number given is the limit that was exceeded.
TooManyStates(usize),
}
impl fmt::Display for LevenshteinError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
LevenshteinError::TooManyStates(size_limit) => write!(
f,
"Levenshtein automaton exceeds size limit of \
{size_limit} states"
),
}
}
}
#[cfg(not(feature = "std"))]
impl core::error::Error for LevenshteinError {}
#[cfg(feature = "std")]
impl std::error::Error for LevenshteinError {}
/// A Unicode aware Levenshtein automaton for running efficient fuzzy queries.
///
/// This is only defined when the `levenshtein` crate feature is enabled.
///
/// A Levenshtein automata is one way to search any finite state transducer
/// for keys that *approximately* match a given query. A Levenshtein automaton
/// approximates this by returning all keys within a certain edit distance of
/// the query. The edit distance is defined by the number of insertions,
/// deletions and substitutions required to turn the query into the key.
/// Insertions, deletions and substitutions are based on
/// **Unicode characters** (where each character is a single Unicode scalar
/// value).
///
/// # Example
///
/// This example shows how to find all keys within an edit distance of `1`
/// from `foo`.
///
/// ```rust
/// use fst_no_std::automaton::Levenshtein;
/// use fst_no_std::{IntoStreamer, Streamer, Set};
///
/// let keys = vec!["fa", "fo", "fob", "focus", "foo", "food", "foul"];
/// let set = Set::from_iter(keys).unwrap();
///
/// let lev = Levenshtein::new("foo", 1).unwrap();
/// let mut stream = set.search(&lev).into_stream();
///
/// let mut keys = vec![];
/// while let Some(key) = stream.next() {
/// keys.push(key.to_vec());
/// }
///
/// assert_eq!(keys, vec![
/// "fo".as_bytes(), // 1 deletion
/// "fob".as_bytes(), // 1 substitution
/// "foo".as_bytes(), // 0 insertions/deletions/substitutions
/// "food".as_bytes(), // 1 insertion
/// ]);
/// ```
///
/// This example only uses ASCII characters, but it will work equally well
/// on Unicode characters.
///
/// # Warning: experimental
///
/// While executing this Levenshtein automaton against a finite state
/// transducer will be very fast, *constructing* an automaton may not be.
/// Namely, this implementation is a proof of concept. While I believe the
/// algorithmic complexity is not exponential, the implementation is not speedy
/// and it can use enormous amounts of memory (tens of MB before a hard-coded
/// limit will cause an error to be returned).
///
/// This is important functionality, so one should count on this implementation
/// being vastly improved in the future.
#[cfg(feature = "alloc")]
pub struct Levenshtein {
prog: DynamicLevenshtein,
dfa: Dfa,
}
#[cfg(feature = "alloc")]
impl Levenshtein {
/// Create a new Levenshtein query.
///
/// The query finds all matching terms that are at most `distance`
/// edit operations from `query`. (An edit operation may be an insertion,
/// a deletion or a substitution.)
///
/// If the underlying automaton becomes too big, then an error is returned.
/// Use `new_with_limit` to raise the limit dynamically.
///
/// A `Levenshtein` value satisfies the `Automaton` trait, which means it
/// can be used with the `search` method of any finite state transducer.
#[cfg(feature = "alloc")]
pub fn new(
query: &str,
distance: u32,
) -> Result<Levenshtein, LevenshteinError> {
let lev = DynamicLevenshtein {
query: query.to_owned(),
dist: distance as usize,
};
let dfa = DfaBuilder::new(lev.clone()).build()?;
Ok(Levenshtein { prog: lev, dfa })
}
/// Create a new Levenshtein query, but pass the state limit yourself.
///
/// The query finds all matching terms that are at most `distance`
/// edit operations from `query`. (An edit operation may be an insertion,
/// a deletion or a substitution.)
///
/// If the underlying automaton becomes too big, then an error is returned.
/// This limit can be configured with `state_limit`.
///
/// A `Levenshtein` value satisfies the `Automaton` trait, which means it
/// can be used with the `search` method of any finite state transducer.
#[cfg(feature = "alloc")]
pub fn new_with_limit(
query: &str,
distance: u32,
state_limit: usize,
) -> Result<Levenshtein, LevenshteinError> {
let lev = DynamicLevenshtein {
query: query.to_owned(),
dist: distance as usize,
};
let dfa =
DfaBuilder::new(lev.clone()).build_with_limit(state_limit)?;
Ok(Levenshtein { prog: lev, dfa })
}
}
#[cfg(feature = "alloc")]
impl fmt::Debug for Levenshtein {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"Levenshtein(query: {:?}, distance: {:?})",
self.prog.query, self.prog.dist
)
}
}
#[derive(Clone)]
#[cfg(feature = "alloc")]
struct DynamicLevenshtein {
query: String,
dist: usize,
}
#[cfg(feature = "alloc")]
impl DynamicLevenshtein {
fn start(&self) -> Vec<usize> {
(0..self.query.chars().count() + 1).collect()
}
fn is_match(&self, state: &[usize]) -> bool {
state.last().is_some_and(|&n| n <= self.dist)
}
fn can_match(&self, state: &[usize]) -> bool {
state.iter().min().is_some_and(|&n| n <= self.dist)
}
fn accept(&self, state: &[usize], chr: Option<char>) -> Vec<usize> {
let mut next = vec![state[0] + 1];
for (i, c) in self.query.chars().enumerate() {
let cost = usize::from(Some(c) != chr);
let v = cmp::min(
cmp::min(next[i] + 1, state[i + 1] + 1),
state[i] + cost,
);
next.push(cmp::min(v, self.dist + 1));
}
next
}
}
#[cfg(feature = "alloc")]
impl Automaton for Levenshtein {
type State = Option<usize>;
#[inline]
fn start(&self) -> Option<usize> {
Some(0)
}
#[inline]
fn is_match(&self, state: &Option<usize>) -> bool {
state.map(|state| self.dfa.states[state].is_match).unwrap_or(false)
}
#[inline]
fn can_match(&self, state: &Option<usize>) -> bool {
state.is_some()
}
#[inline]
fn accept(&self, state: &Option<usize>, byte: u8) -> Option<usize> {
state.and_then(|state| self.dfa.states[state].next[byte as usize])
}
}
#[derive(Debug)]
#[cfg(feature = "alloc")]
struct Dfa {
states: Vec<State>,
}
struct State {
next: [Option<usize>; 256],
is_match: bool,
}
impl fmt::Debug for State {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "State {{")?;
writeln!(f, " is_match: {:?}", self.is_match)?;
for i in 0..256 {
if let Some(si) = self.next[i] {
writeln!(f, " {i:?}: {si:?}")?;
}
}
write!(f, "}}")
}
}
#[cfg(feature = "alloc")]
struct DfaBuilder {
dfa: Dfa,
lev: DynamicLevenshtein,
cache: HashMap<Vec<usize>, usize>,
}
#[cfg(feature = "alloc")]
impl DfaBuilder {
fn new(lev: DynamicLevenshtein) -> DfaBuilder {
DfaBuilder {
dfa: Dfa { states: Vec::with_capacity(16) },
lev,
cache: HashMap::with_capacity(1024),
}
}
fn build_with_limit(
mut self,
state_limit: usize,
) -> Result<Dfa, LevenshteinError> {
let mut stack = vec![self.lev.start()];
let mut seen = HashSet::new();
let query = self.lev.query.clone(); // temp work around of borrowck
while let Some(lev_state) = stack.pop() {
let dfa_si = self.cached_state(&lev_state).unwrap();
let mismatch = self.add_mismatch_utf8_states(dfa_si, &lev_state);
if let Some((next_si, lev_next)) = mismatch {
if !seen.contains(&next_si) {
seen.insert(next_si);
stack.push(lev_next);
}
}
for (i, c) in query.chars().enumerate() {
if lev_state[i] > self.lev.dist {
continue;
}
let lev_next = self.lev.accept(&lev_state, Some(c));
let next_si = self.cached_state(&lev_next);
if let Some(next_si) = next_si {
self.add_utf8_sequences(true, dfa_si, next_si, c, c);
if !seen.contains(&next_si) {
seen.insert(next_si);
stack.push(lev_next);
}
}
}
if self.dfa.states.len() > state_limit {
return Err(LevenshteinError::TooManyStates(state_limit));
}
}
Ok(self.dfa)
}
fn build(self) -> Result<Dfa, LevenshteinError> {
self.build_with_limit(DEFAULT_STATE_LIMIT)
}
fn cached_state(&mut self, lev_state: &[usize]) -> Option<usize> {
self.cached(lev_state).map(|(si, _)| si)
}
fn cached(&mut self, lev_state: &[usize]) -> Option<(usize, bool)> {
if !self.lev.can_match(lev_state) {
return None;
}
Some(match self.cache.entry(lev_state.to_vec()) {
Entry::Occupied(v) => (*v.get(), true),
Entry::Vacant(v) => {
let is_match = self.lev.is_match(lev_state);
self.dfa.states.push(State { next: [None; 256], is_match });
(*v.insert(self.dfa.states.len() - 1), false)
}
})
}
fn add_mismatch_utf8_states(
&mut self,
from_si: usize,
lev_state: &[usize],
) -> Option<(usize, Vec<usize>)> {
let mismatch_state = self.lev.accept(lev_state, None);
let to_si = match self.cached(&mismatch_state) {
None => return None,
Some((si, _)) => si,
// Some((si, true)) => return Some((si, mismatch_state)),
// Some((si, false)) => si,
};
self.add_utf8_sequences(false, from_si, to_si, '\u{0}', '\u{10FFFF}');
Some((to_si, mismatch_state))
}
fn add_utf8_sequences(
&mut self,
overwrite: bool,
from_si: usize,
to_si: usize,
from_chr: char,
to_chr: char,
) {
for seq in Utf8Sequences::new(from_chr, to_chr) {
let mut fsi = from_si;
for range in &seq.as_slice()[0..seq.len() - 1] {
let tsi = self.new_state(false);
self.add_utf8_range(overwrite, fsi, tsi, range);
fsi = tsi;
}
self.add_utf8_range(
overwrite,
fsi,
to_si,
&seq.as_slice()[seq.len() - 1],
);
}
}
fn add_utf8_range(
&mut self,
overwrite: bool,
from: usize,
to: usize,
range: &Utf8Range,
) {
for b in (range.start as usize)..=(range.end as usize) {
if overwrite || self.dfa.states[from].next[b].is_none() {
self.dfa.states[from].next[b] = Some(to);
}
}
}
fn new_state(&mut self, is_match: bool) -> usize {
self.dfa.states.push(State { next: [None; 256], is_match });
self.dfa.states.len() - 1
}
}