1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//! Traits used to abstract Ciphersuites.

use std::{
    fmt::Debug,
    ops::{Add, Mul, Sub},
};

use rand_core::{CryptoRng, RngCore};

use crate::{Error, FieldError, GroupError, Signature, VerifyingKey};

/// A prime order finite field GF(q) over which all scalar values for our prime order group can be
/// multiplied are defined.
///
/// This trait does not have to be implemented for a finite field scalar itself, it can be a
/// pass-through, implemented for a type just for the ciphersuite, and calls through to another
/// implementation underneath, so that this trait does not have to be implemented for types you
/// don't own.
pub trait Field: Copy + Clone {
    /// An element of the scalar field GF(p).
    /// The Eq/PartialEq implementation MUST be constant-time.
    type Scalar: Add<Output = Self::Scalar>
        + Copy
        + Clone
        + Eq
        + Mul<Output = Self::Scalar>
        + PartialEq
        + Sub<Output = Self::Scalar>;

    /// A unique byte array buf of fixed length N.
    type Serialization: AsRef<[u8]> + Debug + TryFrom<Vec<u8>>;

    /// Returns the zero element of the field, the additive identity.
    fn zero() -> Self::Scalar;

    /// Returns the one element of the field, the multiplicative identity.
    fn one() -> Self::Scalar;

    /// Computes the multiplicative inverse of an element of the scalar field, failing if the
    /// element is zero.
    fn invert(scalar: &Self::Scalar) -> Result<Self::Scalar, FieldError>;

    /// Generate a random scalar from the entire space [0, l-1]
    ///
    /// <https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-3.1-3.3>
    fn random<R: RngCore + CryptoRng>(rng: &mut R) -> Self::Scalar;

    /// A member function of a [`Field`] that maps a [`Scalar`] to a unique byte array buf of
    /// fixed length Ne.
    ///
    /// <https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-3.1-3.8>
    fn serialize(scalar: &Self::Scalar) -> Self::Serialization;

    /// A member function of a [`Field`] that maps a [`Scalar`] to a unique byte array buf of
    /// fixed length Ne, in little-endian order.
    ///
    /// This is used internally.
    fn little_endian_serialize(scalar: &Self::Scalar) -> Self::Serialization;

    /// A member function of a [`Field`] that attempts to map a byte array `buf` to a [`Scalar`].
    ///
    /// Fails if the input is not a valid byte representation of an [`Scalar`] of the
    /// [`Field`]. This function can raise an [`Error`] if deserialization fails.
    ///
    /// <https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-3.1-3.9>
    fn deserialize(buf: &Self::Serialization) -> Result<Self::Scalar, FieldError>;
}

/// An element of the [`Ciphersuite`] `C`'s [`Group`]'s scalar [`Field`].
pub type Scalar<C> = <<<C as Ciphersuite>::Group as Group>::Field as Field>::Scalar;

/// A prime-order group (or subgroup) that provides everything we need to create and verify Schnorr
/// signatures.
///
/// This trait does not have to be implemented for the curve/element/point itself, it can be a
/// pass-through, implemented for a type just for the ciphersuite, and calls through to another
/// implementation underneath, so that this trait does not have to be implemented for types you
/// don't own.
pub trait Group: Copy + Clone + PartialEq {
    /// A prime order finite field GF(q) over which all scalar values for our prime order group can
    /// be multiplied are defined.
    type Field: Field;

    /// An element of our group that we will be computing over.
    type Element: Add<Output = Self::Element>
        + Copy
        + Clone
        + Eq
        + Mul<<Self::Field as Field>::Scalar, Output = Self::Element>
        + PartialEq
        + Sub<Output = Self::Element>;

    /// A unique byte array buf of fixed length N.
    ///
    /// Little-endian!
    type Serialization: AsRef<[u8]> + Debug + TryFrom<Vec<u8>>;

    /// The order of the the quotient group when the prime order subgroup divides the order of the
    /// full curve group.
    ///
    /// If using a prime order elliptic curve, the cofactor should be 1 in the scalar field.
    fn cofactor() -> <Self::Field as Field>::Scalar;

    /// Additive [identity] of the prime order group.
    ///
    /// [identity]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-3.1-3.2
    fn identity() -> Self::Element;

    /// The fixed generator element of the prime order group.
    ///
    /// The 'base' of ['ScalarBaseMult()'] from the spec.
    ///
    /// [`ScalarBaseMult()`]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-3.1-3.5
    fn generator() -> Self::Element;

    /// A member function of a group _G_ that maps an [`Element`] to a unique byte array buf of
    /// fixed length Ne.
    ///
    /// <https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-3.1-3.6>
    fn serialize(element: &Self::Element) -> Self::Serialization;

    /// A member function of a [`Group`] that attempts to map a byte array `buf` to an [`Element`].
    ///
    /// Fails if the input is not a valid byte representation of an [`Element`] of the
    /// [`Group`]. This function can raise an [`Error`] if deserialization fails or if the
    /// resulting [`Element`] is the identity element of the group
    ///
    /// <https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-3.1-3.7>
    fn deserialize(buf: &Self::Serialization) -> Result<Self::Element, GroupError>;
}

/// An element of the [`Ciphersuite`] `C`'s [`Group`].
pub type Element<C> = <<C as Ciphersuite>::Group as Group>::Element;

/// A [FROST ciphersuite] specifies the underlying prime-order group details and cryptographic hash
/// function.
///
/// [FROST ciphersuite]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-ciphersuites
pub trait Ciphersuite: Copy + Clone + PartialEq + Debug {
    /// The ciphersuite ID string. It should be equal to the contextString in
    /// the spec. For new ciphersuites, this should be a string that identifies
    /// the ciphersuite; it's recommended to use a similar format to the
    /// ciphersuites in the FROST spec, e.g. "FROST-RISTRETTO255-SHA512-v1".
    const ID: &'static str;

    /// The prime order group (or subgroup) that this ciphersuite operates over.
    type Group: Group;

    /// A unique byte array of fixed length.
    type HashOutput: AsRef<[u8]>;

    /// A unique byte array of fixed length that is the `Group::ElementSerialization` +
    /// `Group::ScalarSerialization`
    type SignatureSerialization: AsRef<[u8]> + TryFrom<Vec<u8>>;

    /// [H1] for a FROST ciphersuite.
    ///
    /// Maps arbitrary inputs to `Self::Scalar` elements of the prime-order group scalar field.
    ///
    /// [H1]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-cryptographic-hash-function
    fn H1(m: &[u8]) -> <<Self::Group as Group>::Field as Field>::Scalar;

    /// [H2] for a FROST ciphersuite.
    ///
    /// Maps arbitrary inputs to `Self::Scalar` elements of the prime-order group scalar field.
    ///
    /// [H2]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-cryptographic-hash-function
    fn H2(m: &[u8]) -> <<Self::Group as Group>::Field as Field>::Scalar;

    /// [H3] for a FROST ciphersuite.
    ///
    /// Maps arbitrary inputs to `Self::Scalar` elements of the prime-order group scalar field.
    ///
    /// [H3]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-cryptographic-hash-function
    fn H3(m: &[u8]) -> <<Self::Group as Group>::Field as Field>::Scalar;

    /// [H4] for a FROST ciphersuite.
    ///
    /// Usually an an alias for the ciphersuite hash function _H_ with domain separation applied.
    ///
    /// [H4]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-cryptographic-hash-function
    fn H4(m: &[u8]) -> Self::HashOutput;

    /// [H5] for a FROST ciphersuite.
    ///
    /// Usually an an alias for the ciphersuite hash function _H_ with domain separation applied.
    ///
    /// [H5]: https://github.com/cfrg/draft-irtf-cfrg-frost/blob/master/draft-irtf-cfrg-frost.md#cryptographic-hash
    fn H5(m: &[u8]) -> Self::HashOutput;

    /// Hash function for a FROST ciphersuite, used for the DKG.
    ///
    /// The DKG it not part of the specification, thus this is optional.
    /// It can return None if DKG is not supported by the Ciphersuite. This is
    /// the default implementation.
    ///
    /// Maps arbitrary inputs to non-zero `Self::Scalar` elements of the prime-order group scalar field.
    fn HDKG(_m: &[u8]) -> Option<<<Self::Group as Group>::Field as Field>::Scalar> {
        None
    }

    /// Hash function for a FROST ciphersuite, used for deriving identifiers from strings.
    ///
    /// This feature is not part of the specification and is just a convenient
    /// way of creating identifiers. Therefore it can return None if this is not supported by the
    /// Ciphersuite. This is the default implementation.
    ///
    /// Maps arbitrary inputs to non-zero `Self::Scalar` elements of the prime-order group scalar field.
    fn HID(_m: &[u8]) -> Option<<<Self::Group as Group>::Field as Field>::Scalar> {
        None
    }

    /// Verify a signature for this ciphersuite. The default implementation uses the "cofactored"
    /// equation (it multiplies by the cofactor returned by [`Group::cofactor()`]).
    ///
    /// # Cryptographic Safety
    ///
    /// You may override this to provide a tailored implementation, but if the ciphersuite defines it,
    /// it must also multiply by the cofactor to comply with the RFC. Note that batch verification
    /// (see [`crate::batch::Verifier`]) also uses the default implementation regardless whether a
    /// tailored implementation was provided.
    fn verify_signature(
        msg: &[u8],
        signature: &Signature<Self>,
        public_key: &VerifyingKey<Self>,
    ) -> Result<(), Error<Self>> {
        let c = crate::challenge::<Self>(&signature.R, public_key, msg);

        public_key.verify_prehashed(c, signature)
    }
}