1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
// Copyright 2024 Foyer Project Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::{future::Future, sync::Arc};
use parking_lot::Mutex;
use tokio::{runtime::Handle, task::JoinHandle};
/// A structured async batch pipeline.
#[derive(Debug)]
pub struct AsyncBatchPipeline<T, R> {
inner: Arc<Mutex<AsyncBatchPipelineInner<T, R>>>,
runtime: Handle,
}
impl<T, R> Clone for AsyncBatchPipeline<T, R> {
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
runtime: self.runtime.clone(),
}
}
}
#[derive(Debug)]
struct AsyncBatchPipelineInner<T, R> {
state: T,
has_leader: bool,
handle: Option<JoinHandle<R>>,
}
/// The token returns by [`AsyncBatchPipeline::accumulate`] if the caller is the leader of the batch.
pub struct LeaderToken<T, R> {
batch: AsyncBatchPipeline<T, R>,
handle: Option<JoinHandle<R>>,
}
impl<T, R> AsyncBatchPipeline<T, R> {
/// Create a new structured async batch pipeline with the given state as its initial state.
pub fn new(state: T) -> Self {
Self::with_runtime(state, Handle::current())
}
/// Create a new structured async batch pipeline with the given state as its initial state.
///
/// The pipeline will use the given runtime for spawning tasks.
pub fn with_runtime(state: T, runtime: Handle) -> Self {
Self {
inner: Arc::new(Mutex::new(AsyncBatchPipelineInner {
state,
has_leader: false,
handle: None,
})),
runtime,
}
}
/// Accumulate the batch state with the given method.
///
/// `accumulate` returns a leader token if the caller is the leader of the batch.
///
/// The leader must call [`LeaderToken::pipeline`] to handle the batch and progress the pipeline.
pub fn accumulate<F>(&self, f: F) -> Option<LeaderToken<T, R>>
where
F: FnOnce(&mut T),
{
let mut inner = self.inner.lock();
let token = if !inner.has_leader {
inner.has_leader = true;
Some(LeaderToken {
batch: self.clone(),
handle: inner.handle.take(),
})
} else {
None
};
f(&mut inner.state);
token
}
/// Wait for the last batch pipeline to finish.
pub fn wait(&self) -> Option<JoinHandle<R>> {
self.inner.lock().handle.take()
}
}
impl<T, R> LeaderToken<T, R> {
/// Pipeline execute futures.
///
/// `new_state`
/// - Receives the reference of the old state and returns the new state.
///
/// `f`
/// - Receives the owned old state and returns a future.
/// - The future will be polled after handling the previous result.
/// - The future is guaranteed to be execute one by one in order.
///
/// `fr`
/// - Handle the previous result.
pub fn pipeline<FR, F, FU, NS>(mut self, new_state: NS, fr: FR, f: F) -> JoinHandle<()>
where
T: Send + 'static,
R: Send + 'static,
FR: FnOnce(R) + Send + 'static,
F: FnOnce(T) -> FU + Send + 'static,
FU: Future<Output = R> + Send + 'static,
NS: FnOnce(&T) -> T + Send + 'static,
{
let handle = self.handle.take();
let inner = self.batch.inner.clone();
let runtime = self.batch.runtime.clone();
self.batch.runtime.spawn(async move {
if let Some(handle) = handle {
fr(handle.await.unwrap());
}
let mut guard = inner.lock();
let mut state = new_state(&guard.state);
std::mem::swap(&mut guard.state, &mut state);
let future = f(state);
let handle = runtime.spawn(future);
guard.handle = Some(handle);
guard.has_leader = false;
})
}
}
#[cfg(test)]
mod tests {
use futures::future::join_all;
use itertools::Itertools;
use super::*;
#[tokio::test]
async fn test_async_batch_pipeline() {
let batch: AsyncBatchPipeline<Vec<u64>, Vec<u64>> = AsyncBatchPipeline::new(vec![]);
let res = join_all((0..100).map(|i| {
let batch = batch.clone();
async move { batch.accumulate(|state| state.push(i)) }
}))
.await;
let mut res = res.into_iter().flatten().collect_vec();
assert_eq!(res.len(), 1);
let token = res.remove(0);
token
.pipeline(|_| vec![], |_| unreachable!(), |state| async move { state })
.await
.unwrap();
let res = join_all((100..200).map(|i| {
let batch = batch.clone();
async move { batch.accumulate(|state| state.push(i)) }
}))
.await;
let mut res = res.into_iter().flatten().collect_vec();
assert_eq!(res.len(), 1);
let token = res.remove(0);
token
.pipeline(
|_| vec![],
|mut res| {
res.sort();
assert_eq!(res, (0..100).collect_vec());
},
|state| async move { state },
)
.await
.unwrap();
let mut res = batch.wait().unwrap().await.unwrap();
res.sort();
assert_eq!(res, (100..200).collect_vec());
}
}