1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
//! A crate for quick and easy format structure definitions for use in binary file parsing.
//!
//! # Usage
//!
//! This crate should be used by invoking the provided [`format_struct`] macro like this:
//!
//! ```rust
//! use format_struct::{format_struct, FromByteSlice};
//!
//! // Here we define a small structure.
//! format_struct! {
//! struct little Test {
//! foo: u8,
//! bar: u32,
//! baz: [u8; 2],
//! }
//! }
//!
//! # pub fn main() {
//! // This is the data we want to parse:
//! let data = &[
//! 0x42u8, // this goes into foo
//! 0x39, 0x05, 0x00, 0x00, // this goes into bar
//! 0xaa, 0x55, // this goes into baz
//! ][..];
//!
//! // This is completely zero-cost since the implementation is just a transmute.
//! let s = Test::from_byte_slice(data).unwrap();
//!
//! // Each integer field access compiles to a single unaligned memory access instruction.
//! assert_eq!(s.foo(), 0x42);
//! assert_eq!(s.bar(), 1337);
//! assert_eq!(s.baz(), &[0xaa, 0x55]);
//! # }
//! ```
//!
//! # Reexports
//!
//! Due to the way macros currently work in Rust this crate reexports the [`paste`] crate since it's needed to construct
//! identifiers for setters and mutable getters.
#![no_std]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![deny(rust_2018_idioms)]
#![deny(unreachable_pub)]
#[cfg(feature = "std")]
extern crate std;
pub use paste;
/// The error type returned when a slice provided to any of the [`FromByteSlice`] methods didn't meet their size
/// constraints.
#[derive(Copy, Clone, Debug)]
pub struct InvalidSizeError;
impl core::fmt::Display for InvalidSizeError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str("byte slice is not aligned to the structure's size")
}
}
#[cfg(feature = "std")]
impl std::error::Error for InvalidSizeError {}
/// An **unsafe** trait for types that byte slices may be transmuted into.
///
/// This trait is usually automatically implemented by the [`format_struct`] macro so there is no need to implement it
/// manually.
///
/// All of the trait's methods could be implemented automatically but are not due to limitations of the Rust's generics:
/// using `Self` in a const context (array size on our case) isn't possible in traits. Since the trait isn't meant to
/// be implemented manually that is considered a non-issue.
///
/// # Safety
///
/// Types implementing the trait must be safe to transmute from an arbitrary byte slice that has proper size. That means
/// their alignment must be 1.
pub unsafe trait FromByteSlice: Sized {
/// Transmutes an immutable byte slice reference into an immutable `Self` reference.
///
/// # Errors
///
/// Returns an error in case the size doesn't match the type's size.
fn from_byte_slice(s: &[u8]) -> Result<&Self, InvalidSizeError>;
/// Transmutes a mutable byte slice reference into a mutable `Self` reference.
///
/// # Errors
///
/// Returns an error in case the size doesn't match the type's size.
fn from_byte_slice_mut(s: &mut [u8]) -> Result<&mut Self, InvalidSizeError>;
/// Transmutes an immutable byte slice reference into an immutable to a slice of `Self`.
///
/// # Errors
///
/// Returns an error in case the size isn't a multiple of the type's size.
fn slice_from_byte_slice(s: &[u8]) -> Result<&[Self], InvalidSizeError>;
/// Transmutes a mutable byte slice reference into a mutable to a slice of `Self`.
///
/// # Errors
///
/// Returns an error in case the size isn't a multiple of the type's size.
fn slice_from_byte_slice_mut(s: &mut [u8]) -> Result<&mut [Self], InvalidSizeError>;
}
/// Defines a structure that can be transmuted from/into a byte slice for parsing/constructing binary formats in a
/// zero-copy way. That works due to the generated structure having alignment of 1 byte and no internal padding.
/// Generated structures will have the [`FromByteSlice`] trait implemented on them.
///
/// The macro accepts syntax similar to a standard structure definition in Rust with some differences:
///
/// * The `struct` keyword is followed by either `little` or `big` keywords that specify which endianness to use for
/// the structure's integer fields.
/// * Fields of the generated structure may not have any *meta* attached to them which includes the docs. This may be
/// changed in the future.
///
/// # Examples
///
/// ```rust
/// # use format_struct::format_struct;
/// format_struct! {
/// /// A little-endian test structure.
/// #[derive(Default, Clone)]
/// pub struct little Test {
/// byte: u8,
/// short: u16,
/// word: i32,
/// dword: i64,
/// qword: u128,
/// byte_arr: [u8; 16],
/// }
/// }
/// ```
///
/// It is also possible to define multiple structures in one macro invocation:
///
/// ```rust
/// # use format_struct::format_struct;
/// format_struct! {
/// struct little Foo {
/// byte: u8,
/// }
///
/// struct big Bar {
/// a: u64,
/// }
///
/// pub struct little Baz {
/// z: [u8; 33],
/// }
/// }
/// ```
///
/// # Allowed field types
///
/// Currently only integer types (`u8`, `u16`, `u32`, `u64`, `u128` and their signed counterparts) are allowed and
/// statically sized byte arrays (`[u8; N]`).
///
/// # Layout
///
/// The fields in the structure are laid out in declaration order without any padding. That means that the following
/// structure will take 7 bytes instead of 16 you might expect:
///
/// ```rust
/// # use format_struct::format_struct;
/// format_struct! {
/// struct little SmallStruct {
/// byte: u8,
/// dword: u64,
/// }
/// }
/// ```
///
/// # Inner workings
///
/// Structures generated by this macro will have their integer fields replaced with appropriately sized byte arrays.
/// Integer fields will be exposed by generated getters and setters which use `from_(le|be)_bytes` and
/// `to_(le|be)_bytes` to convert between the integer types and byte arrays. Byte array fields will be stored as is and
/// exposed using references.
#[macro_export]
macro_rules! format_struct {
($($(#[$m:meta])* $vis:vis struct $endian:tt $name:ident {$($field_name:ident: $ty:tt),*,})+) => {
$(
#[repr(C)]
$(#[$m])*
$vis struct $name {
$($field_name: format_struct!(@store_type $ty)),*
}
impl $name {
$(format_struct!{@getter $endian $field_name $ty})*
$(format_struct!{@setter_or_mut $endian $field_name $ty})*
}
impl AsRef<[u8]> for $name {
fn as_ref(&self) -> &[u8] {
let ptr = self as *const Self as *const u8;
unsafe { ::core::slice::from_raw_parts(ptr, ::core::mem::size_of::<Self>()) }
}
}
impl AsMut<[u8]> for $name {
fn as_mut(&mut self) -> &mut [u8] {
let ptr = self as *mut Self as *mut u8;
unsafe { ::core::slice::from_raw_parts_mut(ptr, ::core::mem::size_of::<Self>()) }
}
}
unsafe impl $crate::FromByteSlice for $name {
fn from_byte_slice(s: &[u8]) -> ::core::result::Result<&Self, $crate::InvalidSizeError> {
let bytes: &[u8; ::core::mem::size_of::<Self>()] = ::core::convert::TryInto::try_into(s).map_err(|_| $crate::InvalidSizeError)?;
Ok(unsafe { ::core::mem::transmute(bytes) })
}
fn from_byte_slice_mut(s: &mut [u8]) -> ::core::result::Result<&mut Self, $crate::InvalidSizeError> {
let bytes: &mut [u8; ::core::mem::size_of::<Self>()] = ::core::convert::TryInto::try_into(s).map_err(|_| $crate::InvalidSizeError)?;
Ok(unsafe { ::core::mem::transmute(bytes) })
}
fn slice_from_byte_slice(s: &[u8]) -> ::core::result::Result<&[Self], $crate::InvalidSizeError> {
if s.is_empty() {
return Ok(&[]);
} else if s.len() % ::core::mem::size_of::<Self>() != 0 {
return ::core::result::Result::Err($crate::InvalidSizeError);
}
let size = s.len() / ::core::mem::size_of::<Self>();
let ptr = s.as_ptr() as *const Self;
::core::result::Result::Ok(unsafe { ::core::slice::from_raw_parts(ptr, size) })
}
fn slice_from_byte_slice_mut(s: &mut [u8]) -> ::core::result::Result<&mut [Self], $crate::InvalidSizeError> {
if s.is_empty() {
return Ok(&mut []);
} else if s.len() % ::core::mem::size_of::<Self>() != 0 {
return ::core::result::Result::Err($crate::InvalidSizeError);
}
let size = s.len() / ::core::mem::size_of::<Self>();
let ptr = s.as_mut_ptr() as *mut Self;
::core::result::Result::Ok(unsafe { ::core::slice::from_raw_parts_mut(ptr, size) })
}
}
impl ::core::fmt::Debug for $name {
fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
f.debug_struct(stringify!($name))
$(.field(stringify!($field_name), $crate::format_struct!(@debug_target self.$field_name $ty)))*
.finish()
}
}
)+
};
(@store_type [u8; $sz:literal]) => {[u8; $sz]};
(@store_type $ty:ty) => {[u8; ::core::mem::size_of::<$ty>()]};
(@getter $endian:tt $field_name:ident [u8; $sz:literal]) => {
pub const fn $field_name(&self) -> &[u8; $sz] { &self.$field_name }
};
(@getter little $field_name:ident $ty:ty) => {
pub const fn $field_name(&self) -> $ty { <$ty>::from_le_bytes(self.$field_name) }
};
(@getter big $field_name:ident $ty:ty) => {
pub const fn $field_name(&self) -> $ty { <$ty>::from_be_bytes(self.$field_name) }
};
(@setter_or_mut $endian:tt $field_name:ident [u8; $sz:literal]) => {
$crate::paste::paste!{
pub fn [<$field_name _ mut>](&mut self) -> &mut [u8; $sz] { &mut self.$field_name }
}
};
(@setter_or_mut little $field_name:ident $ty:ty) => {
$crate::paste::paste!{
pub fn [<set _ $field_name>](&mut self, value: $ty) { self.$field_name = value.to_le_bytes() }
}
};
(@setter_or_mut big $field_name:ident $ty:ty) => {
$crate::paste::paste!{
pub fn [<set _ $field_name>](&mut self, value: $ty) { self.$field_name = value.to_be_bytes() }
}
};
(@debug_target $self:ident.$field_name:ident [u8; $sz:literal]) => {&$self.$field_name};
(@debug_target $self:ident.$field_name:ident $ty:ty) => {&$self.$field_name()};
}
#[cfg(test)]
#[allow(unused, unreachable_pub)]
mod tests {
format_struct! {
#[derive(Default, Clone)]
struct little TestLe {
byte: u8,
short: u16,
word: u32,
dword: u64,
qword: u128,
byte_arr: [u8; 16],
}
#[derive(Default, Clone)]
struct big TestBe {
byte: u8,
short: u16,
word: u32,
dword: u64,
qword: u128,
byte_arr: [u8; 16],
}
}
#[test]
fn test_access_byte_arr() {
let mut test = TestLe::default();
for b in 0..16 {
test.byte_arr_mut()[b as usize] = b;
}
assert_eq!(test.byte_arr()[5], 5);
}
#[test]
fn test_access_u8() {
let mut test = TestLe::default();
test.set_byte(42);
assert_eq!(test.byte(), 42);
}
#[test]
fn test_access_u16() {
let mut test_le = TestLe::default();
test_le.set_short(1337);
assert_eq!(test_le.short(), 1337);
assert_eq!(test_le.short, 1337u16.to_le_bytes());
let mut test_be = TestBe::default();
test_be.set_short(1337);
assert_eq!(test_be.short(), 1337);
assert_eq!(test_be.short, 1337u16.to_be_bytes());
}
#[test]
fn test_access_u32() {
let mut test_le = TestLe::default();
test_le.set_word(13371337);
assert_eq!(test_le.word(), 13371337);
assert_eq!(test_le.word, 13371337u32.to_le_bytes());
let mut test_be = TestBe::default();
test_be.set_word(13371337);
assert_eq!(test_be.word(), 13371337);
assert_eq!(test_be.word, 13371337u32.to_be_bytes());
}
#[test]
fn test_access_u64() {
let mut test_le = TestLe::default();
test_le.set_dword(1337133713371337);
assert_eq!(test_le.dword(), 1337133713371337);
assert_eq!(test_le.dword, 1337133713371337u64.to_le_bytes());
let mut test_be = TestBe::default();
test_be.set_dword(1337133713371337);
assert_eq!(test_be.dword(), 1337133713371337);
assert_eq!(test_be.dword, 1337133713371337u64.to_be_bytes());
}
#[test]
fn test_access_u128() {
let mut test_le = TestLe::default();
test_le.set_qword(13371337133713371337133713371337);
assert_eq!(test_le.qword(), 13371337133713371337133713371337);
assert_eq!(
test_le.qword,
13371337133713371337133713371337u128.to_le_bytes()
);
let mut test_be = TestBe::default();
test_be.set_qword(13371337133713371337133713371337);
assert_eq!(test_be.qword(), 13371337133713371337133713371337);
assert_eq!(
test_be.qword,
13371337133713371337133713371337u128.to_be_bytes()
);
}
}