1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
use crate::cast::Upcast;
use crate::language::CoreKind;
use crate::language::Language;
use crate::visit::CoreVisit;

/// A term representing a variable.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum CoreVariable<L: Language> {
    /// A "universal free variable" is a variable that appears
    /// free in all terms because it is bound in the environment.
    /// Universal means that it arose from a "forall" binder.
    /// Universal variables are a kind of placeholder meant to represent
    /// "some value" about which you know nothing except what you are
    /// told to assume.
    UniversalVar(CoreUniversalVar<L>),

    /// An "existential free variable" is a variable that appears
    /// free in all terms because it is bound in the environment.
    /// Existential means that it arose from a "exists" binder.
    /// Existential variables are a kind of placeholder for which
    /// you will eventually find some specific value, so the rules typically
    /// accumulate constraints.
    ExistentialVar(CoreExistentialVar<L>),

    /// A bound variable is one that is bound by some enclosing `Binder`
    /// in this term (or a binder about to be constructex; see `fresh_bound_var`).
    BoundVar(CoreBoundVar<L>),
}

impl<L: Language> CoreVariable<L> {
    pub fn kind(&self) -> CoreKind<L> {
        match self {
            CoreVariable::UniversalVar(v) => v.kind,
            CoreVariable::ExistentialVar(v) => v.kind,
            CoreVariable::BoundVar(v) => v.kind,
        }
    }

    /// Shift a variable in through `binders` binding levels.
    /// Only affects bound variables.
    pub fn shift_in(&self) -> Self {
        if let CoreVariable::BoundVar(CoreBoundVar {
            debruijn: Some(db),
            var_index,
            kind,
        }) = self
        {
            CoreBoundVar {
                debruijn: Some(db.shift_in()),
                var_index: *var_index,
                kind: *kind,
            }
            .upcast()
        } else {
            *self
        }
    }

    /// Shift a variable out through `binders` binding levels.
    /// Only affects bound variables. Returns None if the variable
    /// is bound within those binding levels.
    pub fn shift_out(&self) -> Option<Self> {
        if let CoreVariable::BoundVar(CoreBoundVar {
            debruijn: Some(db),
            var_index,
            kind,
        }) = self
        {
            db.shift_out().map(|db1| {
                CoreBoundVar {
                    debruijn: Some(db1),
                    var_index: *var_index,
                    kind: *kind,
                }
                .upcast()
            })
        } else {
            Some(*self)
        }
    }

    /// A variable is *free* (i.e., not bound by any internal binder)
    /// if it is an existential variable, a universal, or has a debruijn
    /// index of `None`. The latter occurs when you `open` a binder (and before
    /// you close it back up again).
    pub fn is_free(&self) -> bool {
        match self {
            CoreVariable::UniversalVar(_)
            | CoreVariable::ExistentialVar(_)
            | CoreVariable::BoundVar(CoreBoundVar {
                debruijn: None,
                var_index: _,
                kind: _,
            }) => true,

            CoreVariable::BoundVar(CoreBoundVar {
                debruijn: Some(_),
                var_index: _,
                kind: _,
            }) => false,
        }
    }

    pub fn is_universal(&self) -> bool {
        match self {
            CoreVariable::UniversalVar(_) => true,
            CoreVariable::ExistentialVar(_) => false,
            CoreVariable::BoundVar(_) => false,
        }
    }
}

impl<L: Language> CoreVisit<L> for CoreVariable<L> {
    fn free_variables(&self) -> Vec<CoreVariable<L>> {
        if self.is_free() {
            vec![*self]
        } else {
            vec![]
        }
    }

    fn size(&self) -> usize {
        1
    }

    fn assert_valid(&self) {}
}

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct CoreExistentialVar<L: Language> {
    pub kind: CoreKind<L>,
    pub var_index: VarIndex,
}

impl<L: Language> CoreVisit<L> for CoreExistentialVar<L> {
    fn free_variables(&self) -> Vec<CoreVariable<L>> {
        vec![self.upcast()]
    }

    fn size(&self) -> usize {
        1
    }

    fn assert_valid(&self) {}
}

/// A *universal variable* is a dummy variable about which nothing is known except
/// that which we see in the environment. When we want to prove something
/// is true for all `T` (`∀T`), we replace `T` with a universal variable.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct CoreUniversalVar<L: Language> {
    pub kind: CoreKind<L>,
    pub var_index: VarIndex,
}

/// Identifies a bound variable.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct CoreBoundVar<L: Language> {
    /// Identifies the binder that contained this variable, counting "outwards".
    /// When you create a binder with `Binder::new`,
    /// When you open a Binder, you get back `Bound
    pub debruijn: Option<DebruijnIndex>,
    pub var_index: VarIndex,
    pub kind: CoreKind<L>,
}

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct DebruijnIndex {
    pub index: usize,
}

impl DebruijnIndex {
    pub const INNERMOST: DebruijnIndex = DebruijnIndex { index: 0 };

    /// Adjust this debruijn index through a binder level.
    pub fn shift_in(&self) -> Self {
        DebruijnIndex {
            index: self.index + 1,
        }
    }

    /// Adjust this debruijn index *outward* through a binder level, if possible.
    pub fn shift_out(&self) -> Option<Self> {
        if self.index > 0 {
            Some(DebruijnIndex {
                index: self.index - 1,
            })
        } else {
            None
        }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct VarIndex {
    pub index: usize,
}

impl VarIndex {
    pub const ZERO: VarIndex = VarIndex { index: 0 };
}

impl std::ops::Add<usize> for VarIndex {
    type Output = VarIndex;

    fn add(self, rhs: usize) -> Self::Output {
        VarIndex {
            index: self.index + rhs,
        }
    }
}

mod cast_impls;
mod debug_impls;