1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Buffer-layout-specific traits for user-defined behavior.
//!
//! [`Layout`]'s job is to split a buffer into sub-slices that will then be distributed to tile to
//! be rendered, and to write color data to these sub-slices.
use std::fmt;
use rayon::prelude::*;
mod slice_cache;
pub use slice_cache::{Chunks, Ref, Slice, SliceCache, Span};
use crate::consts;
/// Listener that gets called after every write to the buffer. Its main use is to flush freshly
/// written memory slices.
pub trait Flusher: fmt::Debug + Send + Sync {
/// Called after `slice` was written to.
fn flush(&self, slice: &mut [u8]);
}
/// A fill that the [`Layout`] uses to write to tiles.
pub enum TileFill<'c> {
/// Fill tile with a solid color.
Solid([u8; 4]),
/// Fill tile with provided colors buffer. They are provided in [column-major] order.
///
/// [column-major]: https://en.wikipedia.org/wiki/Row-_and_column-major_order
Full(&'c [[u8; 4]]),
}
/// A buffer's layout description.
///
/// Implementors are supposed to cache sub-slices between uses provided they are being used with
/// exactly the same buffer. This is achieved by storing a [`SliceCache`] in every layout
/// implementation.
pub trait Layout {
/// Width in pixels.
///
/// # Examples
///
/// ```
/// # use forma_render::cpu::buffer::layout::{Layout, LinearLayout};
/// let layout = LinearLayout::new(2, 3 * 4, 4);
///
/// assert_eq!(layout.width(), 2);
/// ```
fn width(&self) -> usize;
/// Height in pixels.
///
/// # Examples
///
/// ```
/// # use forma_render::cpu::buffer::layout::{Layout, LinearLayout};
/// let layout = LinearLayout::new(2, 3 * 4, 4);
///
/// assert_eq!(layout.height(), 4);
/// ```
fn height(&self) -> usize;
/// Number of buffer sub-slices that will be passes to [`Layout::write`].
///
/// # Examples
///
/// ```
/// # use forma_render::{
/// # cpu::buffer::{layout::{Layout, LinearLayout}}, consts::cpu::TILE_HEIGHT,
/// # };
/// let layout = LinearLayout::new(2, 3 * 4, 4);
///
/// assert_eq!(layout.slices_per_tile(), TILE_HEIGHT);
/// ```
fn slices_per_tile(&self) -> usize;
/// Returns self-stored sub-slices of `buffer` which are stored in a [`SliceCache`].
///
/// # Examples
///
/// ```
/// # use forma_render::cpu::buffer::layout::{Layout, LinearLayout};
/// let mut buffer = [
/// [1; 4], [2; 4], [3; 4],
/// [4; 4], [5; 4], [6; 4],
/// ].concat();
/// let mut layout = LinearLayout::new(2, 3 * 4, 2);
/// let slices = layout.slices(&mut buffer);
///
/// assert_eq!(&*slices[0], &[[1; 4], [2; 4]].concat());
/// assert_eq!(&*slices[1], &[[4; 4], [5; 4]].concat());
/// ```
fn slices<'l, 'b>(&'l mut self, buffer: &'b mut [u8]) -> Ref<'l, [Slice<'b, u8>]>;
/// Writes `fill` to `slices`, optionally calling the `flusher`.
///
/// # Examples
///
/// ```
/// # use forma_render::cpu::buffer::layout::{Layout, LinearLayout, TileFill};
/// let mut buffer = [
/// [1; 4], [2; 4], [3; 4],
/// [4; 4], [5; 4], [6; 4],
/// ].concat();
/// let mut layout = LinearLayout::new(2, 3 * 4, 2);
///
/// LinearLayout::write(&mut *layout.slices(&mut buffer), None, TileFill::Solid([0; 4]));
///
/// assert_eq!(buffer, [
/// [0; 4], [0; 4], [3; 4],
/// [0; 4], [0; 4], [6; 4],
/// ].concat());
fn write(slices: &mut [Slice<'_, u8>], flusher: Option<&dyn Flusher>, fill: TileFill<'_>);
/// Width in tiles.
///
/// # Examples
///
/// ```
/// # use forma_render::{
/// # cpu::buffer::{layout::{Layout, LinearLayout}},
/// # consts::cpu::{TILE_HEIGHT, TILE_WIDTH},
/// # };
/// let layout = LinearLayout::new(2 * TILE_WIDTH, 3 * TILE_WIDTH * 4, 4 * TILE_HEIGHT);
///
/// assert_eq!(layout.width_in_tiles(), 2);
/// ```
#[inline]
fn width_in_tiles(&self) -> usize {
(self.width() + consts::cpu::TILE_WIDTH - 1) >> consts::cpu::TILE_WIDTH_SHIFT
}
/// Height in tiles.
///
/// # Examples
///
/// ```
/// # use forma_render::{
/// # cpu::buffer::{layout::{Layout, LinearLayout}},
/// # consts::cpu::{TILE_HEIGHT, TILE_WIDTH},
/// # };
/// let layout = LinearLayout::new(2 * TILE_WIDTH, 3 * TILE_WIDTH * 4, 4 * TILE_HEIGHT);
///
/// assert_eq!(layout.height_in_tiles(), 4);
/// ```
#[inline]
fn height_in_tiles(&self) -> usize {
(self.height() + consts::cpu::TILE_HEIGHT - 1) >> consts::cpu::TILE_HEIGHT_SHIFT
}
}
/// A linear buffer layout where each optionally strided pixel row of an image is saved
/// sequentially into the buffer.
#[derive(Debug)]
pub struct LinearLayout {
cache: SliceCache,
width: usize,
width_stride: usize,
height: usize,
}
impl LinearLayout {
/// Creates a new linear layout from `width`, `width_stride` (in bytes) and `height`.
///
/// # Examples
///
/// ```
/// # use forma_render::cpu::buffer::layout::{Layout, LinearLayout};
/// let layout = LinearLayout::new(2, 3 * 4, 4);
///
/// assert_eq!(layout.width(), 2);
/// ```
#[inline]
pub fn new(width: usize, width_stride: usize, height: usize) -> Self {
assert!(
width * 4 <= width_stride,
"width exceeds width stride: {} * 4 > {}",
width,
width_stride
);
let cache = SliceCache::new(width_stride * height, move |buffer| {
let mut layout: Vec<_> = buffer
.chunks(width_stride)
.enumerate()
.flat_map(|(tile_y, row)| {
row.slice(..width * 4)
.unwrap()
.chunks(consts::cpu::TILE_WIDTH * 4)
.enumerate()
.map(move |(tile_x, slice)| {
let tile_y = tile_y >> consts::cpu::TILE_HEIGHT_SHIFT;
(tile_x, tile_y, slice)
})
})
.collect();
layout.par_sort_by_key(|&(tile_x, tile_y, _)| (tile_y, tile_x));
layout.into_iter().map(|(_, _, slice)| slice).collect()
});
LinearLayout {
cache,
width,
width_stride,
height,
}
}
}
impl Layout for LinearLayout {
#[inline]
fn width(&self) -> usize {
self.width
}
#[inline]
fn height(&self) -> usize {
self.height
}
#[inline]
fn slices_per_tile(&self) -> usize {
consts::cpu::TILE_HEIGHT
}
#[inline]
fn slices<'l, 'b>(&'l mut self, buffer: &'b mut [u8]) -> Ref<'l, [Slice<'b, u8>]> {
assert!(
self.width <= buffer.len(),
"width exceeds buffer length: {} > {}",
self.width,
buffer.len()
);
assert!(
self.width_stride <= buffer.len(),
"width_stride exceeds buffer length: {} > {}",
self.width_stride,
buffer.len(),
);
assert!(
self.height * self.width_stride <= buffer.len(),
"height * width_stride exceeds buffer length: {} > {}",
self.height * self.width_stride,
buffer.len(),
);
self.cache.access(buffer).unwrap()
}
#[inline]
fn write(slices: &mut [Slice<'_, u8>], flusher: Option<&dyn Flusher>, fill: TileFill<'_>) {
let tiles_len = slices.len();
match fill {
TileFill::Solid(solid) => {
for row in slices.iter_mut().take(tiles_len) {
for color in row.chunks_exact_mut(4) {
color.copy_from_slice(&solid);
}
}
}
TileFill::Full(colors) => {
for (y, row) in slices.iter_mut().enumerate().take(tiles_len) {
for (x, color) in row.chunks_exact_mut(4).enumerate() {
color.copy_from_slice(&colors[x * consts::cpu::TILE_HEIGHT + y]);
}
}
}
}
if let Some(flusher) = flusher {
for row in slices.iter_mut().take(tiles_len) {
flusher.flush(
if let Some(subslice) = row.get_mut(..consts::cpu::TILE_WIDTH * 4) {
subslice
} else {
row
},
);
}
}
}
}