1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
//! Cryptographic signatures.
//!
//! This module lets you create a signing [`IdentityKey`], which can be used to create a
//! [`Signature`] for a given [`Hash`](crate::hash::Hash). Each `IdentityKey` has an associated
//! [`Identity`], which may be freely shared. A `Signature` may be provided separate from the data
//! or alongside it, and always includes the `Identity` of the signer.
//!
//! All `IdentityKey` structs are backed by some struct that implements the [`SignInterface`] trait;
//! this can be an in-memory private key, an interface to an OS-managed keystore, an interface to a
//! hardware security module, or something else.
//!
//! # Example
//!
//! ```
//! # use fog_crypto::identity::*;
//! # use fog_crypto::hash::Hash;
//! # use std::convert::TryFrom;
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//!
//! // Make a new temporary key
//! let mut csprng = rand::rngs::OsRng {};
//! let key = IdentityKey::new_temp(&mut csprng);
//!
//! println!("Identity(Base58): {}", key.id());
//!
//! // Sign some data
//! let hash = Hash::new(b"I am data, soon to be hashed");
//! let signature = key.sign(&hash);
//!
//! // Encode the signature
//! let mut encoded = Vec::new();
//! signature.encode_vec(&mut encoded);
//!
//! // Decode the signature and verify it
//! let unverified = UnverifiedSignature::try_from(&encoded[..])?;
//! match unverified.verify(&hash) {
//!     Ok(verified) => {
//!         println!("Got valid signature, signed by {}", verified.signer());
//!     },
//!     Err(_) => {
//!         println!("Signature failed validation");
//!     }
//! }
//! # Ok(())
//! # }
//! ```
//!
//! # Algorithms
//!
//! The current (and only) algorithm for public-key signatures is Ed25519 with [strict
//! verification][StrictVerification]. The private key is handled by an [`IdentityKey`], while the
//! public key is available as an [`Identity`].
//!
//! [StrictVerification]: https://docs.rs/ed25519-dalek/1.0.1/ed25519_dalek/struct.PublicKey.html#method.verify_strict
//!
//! # Format
//!
//! An [`Identity`] is encoded as a version byte followed by the contained public key, whose length
//! may be dependant on the version. For Ed25519, it is 32 bytes (plus the version byte).
//!
//! An [`IdentityKey`] is encoded as a version byte followed by the contained private key, whose
//! length may be dependant on the version. For Ed25519, it is 32 bytes (plus the version byte).
//! This encoding is only ever used for the payload of an [`IdentityLockbox`].
//!
//! A [`Signature`] is encoded as the version of hash that was signed, the `Identity` of the
//! signer, and finally the actual signature bytes. The length of the signature is dependant on the
//! version of `IdentityKey` (and thus `Identity`) that was used to make the signature. For
//! Ed25519, it is 64 bytes.
//!
//! ```text
//! +--------------+==========+===========+
//! | Hash Version | Identity | Signature |
//! +--------------+==========+===========+
//!
//! - Hash Version (1 byte)
//! - Identity: Variable, depends on Identity version
//! - Signature: Variable, depends on Identity version
//! ```

use ed25519_dalek::Signer;

use crate::{
    hash::{Hash, MAX_HASH_VERSION, MIN_HASH_VERSION},
    lock::LockId,
    lockbox::*,
    stream::StreamKey,
    CryptoError, CryptoSrc,
};

use rand_core::{CryptoRng, RngCore};

use zeroize::Zeroize;

use std::{convert::TryFrom, fmt, sync::Arc};

/// Default signature algorithm version.
pub const DEFAULT_SIGN_VERSION: u8 = 1;

/// Minimum accepted signature algorithm version.
pub const MIN_SIGN_VERSION: u8 = 1;

/// Maximum accepted signature algorithm version.
pub const MAX_SIGN_VERSION: u8 = 1;

const V1_IDENTITY_KEY_SIZE: usize = ed25519_dalek::SECRET_KEY_LENGTH;
const V1_IDENTITY_ID_SIZE: usize = ed25519_dalek::PUBLIC_KEY_LENGTH;
const V1_IDENTITY_SIGN_SIZE: usize = ed25519_dalek::SIGNATURE_LENGTH;

/// Identity Key that allows signing hashes as a given Identity.
///
/// This acts as a wrapper for a specific cryptographic private key, and it is only be used for a
/// specific corresponding signature algorithm. The underlying private key may be located in a
/// hardware module or some other private keystore; in this case, it may be impossible to export
/// the key.
///
/// # Example
///
/// ```
/// # use fog_crypto::identity::*;
/// # use fog_crypto::hash::Hash;
/// # use std::convert::TryFrom;
///
/// // Make a new temporary key
/// let mut csprng = rand::rngs::OsRng {};
/// let key = IdentityKey::new_temp(&mut csprng);
///
/// // Sign some data with it
/// let hash = Hash::new(b"I am data, about to be signed");
/// let signature = key.sign(&hash);
///
/// ```
#[derive(Clone)]
pub struct IdentityKey {
    /// The interface to the actual private key for signing. We wrap it in a Arc to avoid having it
    /// in more than one place in memory. Yes, that fact doesn't matter for keys located on hardware
    /// or in the OS, but it's a property that some crypto libraries (namely ed25519_dalek) want to
    /// encourage.
    interface: Arc<dyn SignInterface>,
}

impl IdentityKey {
    /// Generate a temporary `IdentityKey` that exists in program memory.
    pub fn new_temp<R>(csprng: &mut R) -> IdentityKey
    where
        R: rand_core::CryptoRng + rand_core::RngCore,
    {
        let interface = Arc::new(ContainedIdKey::generate(csprng));
        new_identity_key(interface)
    }

    /// Generate a temporary `IdentityKey` that exists in program memory. Uses the specified
    /// version instead of the default, and fails if the version is unsupported.
    pub fn new_temp_with_version<R>(csprng: &mut R, version: u8) -> Result<IdentityKey, CryptoError>
    where
        R: rand_core::CryptoRng + rand_core::RngCore,
    {
        let interface = Arc::new(ContainedIdKey::with_version(csprng, version)?);
        Ok(new_identity_key(interface))
    }

    /// Get the signature algorithm version used by this key.
    pub fn version(&self) -> u8 {
        self.id().version()
    }

    /// Get the associated [`Identity`] for this key.
    pub fn id(&self) -> &Identity {
        self.interface.id()
    }

    /// Sign a hash. Signing should be fast and always succeed.
    pub fn sign(&self, hash: &Hash) -> Signature {
        self.interface.sign(hash)
    }

    /// The maximum expected size of a signature from this key
    pub fn max_signature_size(&self) -> usize {
        // this comes straight from the Signature code
        1 + V1_IDENTITY_SIGN_SIZE + self.id().size()
    }

    /// Pack this key into a `Lockbox`, meant for the recipient specified by `lock`. Returns None if
    /// this key cannot be exported.
    pub fn export_for_lock<R: CryptoRng + RngCore>(
        &self,
        csprng: &mut R,
        lock: &LockId,
    ) -> Option<IdentityLockbox> {
        self.interface.self_export_lock(csprng, lock)
    }

    /// Pack this key into a `Lockbox`, meant for the recipient specified by `stream`. Returns None
    /// if this key cannot be exported.
    pub fn export_for_stream<R: CryptoRng + RngCore>(
        &self,
        csprng: &mut R,
        stream: &StreamKey,
    ) -> Option<IdentityLockbox> {
        self.interface.self_export_stream(csprng, stream)
    }
}

impl fmt::Display for IdentityKey {
    /// Display just the Identity (never the underlying key).
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(self.id(), f)
    }
}

impl fmt::Debug for IdentityKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("IdentityKey")
            .field("version", &self.version())
            .field("public_key", &self.id().raw_public_key())
            .finish()
    }
}

/// Create a new `IdentityKey`, given an `Identity` and something implementing the signature
/// interface. This should only be used by implementors of the `Vault` trait, not by any end users.
pub fn new_identity_key(interface: Arc<dyn SignInterface>) -> IdentityKey {
    IdentityKey { interface }
}

/// An Identity, wrapping a public signing key.
///
/// This is useful as an identifier of who has created a given signature.
#[derive(Clone)]
pub struct Identity {
    id: ed25519_dalek::PublicKey,
}

impl Identity {
    /// Get the cryptographic algorithm version used for this identity.
    pub fn version(&self) -> u8 {
        1u8
    }

    /// Get the raw public signing key contained within.
    pub fn raw_public_key(&self) -> &[u8] {
        self.id.as_ref()
    }

    /// Convert into a byte vector. For extending an existing byte vector, see
    /// [`encode_vec`](Self::encode_vec).
    pub fn as_vec(&self) -> Vec<u8> {
        let mut v = Vec::new();
        self.encode_vec(&mut v);
        v
    }

    /// Attempt to parse a base58-encoded Identity.
    pub fn from_base58(s: &str) -> Result<Self, CryptoError> {
        let raw = bs58::decode(s)
            .into_vec()
            .or(Err(CryptoError::BadFormat("Not valid Base58")))?;
        Self::try_from(&raw[..])
    }

    /// Convert into a base58-encoded Identity.
    pub fn to_base58(&self) -> String {
        bs58::encode(&(self.as_vec())).into_string()
    }

    /// Encode onto an existing byte vector. Writes out the version followed by the public signing
    /// key. It does not include any length information in the encoding.
    pub fn encode_vec(&self, buf: &mut Vec<u8>) {
        let id = self.id.as_bytes();
        buf.reserve(self.size());
        buf.push(self.version());
        buf.extend_from_slice(id);
    }

    /// Get the length of this Identity once encoded as bytes.
    pub fn size(&self) -> usize {
        1 + self.id.as_ref().len()
    }
}

impl TryFrom<&[u8]> for Identity {
    type Error = CryptoError;

    /// Value must be the same length as the Identity was when it was encoded (no trailing bytes
    /// allowed).
    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        let (&version, data) = value.split_first().ok_or(CryptoError::BadLength {
            step: "get Identity version",
            expected: 1,
            actual: 0,
        })?;
        if version != 1u8 {
            return Err(CryptoError::UnsupportedVersion(version));
        }
        if data.len() != V1_IDENTITY_ID_SIZE {
            return Err(CryptoError::BadLength {
                step: "get Identity public key",
                expected: V1_IDENTITY_ID_SIZE,
                actual: data.len(),
            });
        }
        let id = ed25519_dalek::PublicKey::from_bytes(data).or(Err(CryptoError::BadKey))?;
        Ok(Identity { id })
    }
}

impl fmt::Debug for Identity {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Identity")
            .field("version", &self.version())
            .field("public_key", &self.raw_public_key())
            .finish()
    }
}

impl fmt::Display for Identity {
    /// Display as a base58-encoded string.
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.to_base58())
    }
}

impl fmt::LowerHex for Identity {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for byte in self.as_vec().iter() {
            write!(f, "{:x}", byte)?;
        }
        Ok(())
    }
}

impl fmt::UpperHex for Identity {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for byte in self.as_vec().iter() {
            write!(f, "{:X}", byte)?;
        }
        Ok(())
    }
}

impl std::cmp::PartialEq for Identity {
    fn eq(&self, other: &Self) -> bool {
        self.id == other.id
    }
}

impl std::cmp::Eq for Identity {}

impl std::hash::Hash for Identity {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.id.as_bytes().hash(state);
    }
}

/// A Signature interface, implemented by anything that can hold a private cryptographic signing
/// key.
///
/// An implementor must handle all supported cryptographic signing algorithms.
pub trait SignInterface {
    /// Get the corresponding `Identity` for the private key.
    fn id(&self) -> &Identity;

    /// Sign a hash.
    fn sign(&self, hash: &Hash) -> Signature;

    /// Export the signing key in an `IdentityLockbox`, with `receive_lock` as the recipient. If
    /// the key cannot be exported, this should return None.
    fn self_export_lock(
        &self,
        csprng: &mut dyn CryptoSrc,
        receive_lock: &LockId,
    ) -> Option<IdentityLockbox>;

    /// Export the signing key in an `IdentityLockbox`, with `receive_stream` as the recipient. If
    /// the key cannot be exported, this should return None. Additionally, if the underlying
    /// implementation does not allow moving the raw key into memory (i.e. it cannot call
    /// [`StreamInterface::encrypt`][StreamEncrypt] or [`lock_id_encrypt`][LockEncrypt]) then None
    /// can also be returned.
    ///
    /// [StreamEncrypt]: crate::stream::StreamInterface::encrypt
    /// [LockEncrypt]: crate::lock::lock_id_encrypt
    fn self_export_stream(
        &self,
        csprng: &mut dyn CryptoSrc,
        receive_stream: &StreamKey,
    ) -> Option<IdentityLockbox>;
}

/// A self-contained implementor of `SignInterface`. It's expected this will be used unless the key
/// is being managed by the OS or a hardware module.
pub struct ContainedIdKey {
    id: Identity,
    inner: ed25519_dalek::Keypair,
}

impl ContainedIdKey {
    /// Generate a new key given a cryptographic random number generator.
    pub fn generate<R>(csprng: &mut R) -> Self
    where
        R: rand_core::CryptoRng + rand_core::RngCore,
    {
        Self::with_version(csprng, DEFAULT_SIGN_VERSION).unwrap()
    }

    /// Generate a new key with a specific version, given a cryptographic random number generator.
    /// Fails if the version isn't supported.
    pub fn with_version<R>(csprng: &mut R, version: u8) -> Result<Self, CryptoError>
    where
        R: rand_core::CryptoRng + rand_core::RngCore,
    {
        if (version < MIN_SIGN_VERSION) || (version > MAX_SIGN_VERSION) {
            return Err(CryptoError::UnsupportedVersion(version));
        }

        let inner = ed25519_dalek::Keypair::generate(csprng);
        let id = Identity { id: inner.public };

        Ok(Self { id, inner })
    }

    /// Encode the raw key, prepended with the version byte. The output vector must be either
    /// zeroized or encrypted before being dropped.
    pub fn encode_vec(&self, buf: &mut Vec<u8>) {
        buf.reserve(1 + ed25519_dalek::SECRET_KEY_LENGTH);
        buf.push(1u8);
        buf.extend_from_slice(self.inner.secret.as_bytes())
    }
}

impl TryFrom<&[u8]> for ContainedIdKey {
    type Error = CryptoError;

    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        let (version, key) = value.split_first().ok_or(CryptoError::BadLength {
            step: "get IdentityKey version",
            expected: 1,
            actual: 0,
        })?;
        let version = *version;
        if version < MIN_SIGN_VERSION {
            return Err(CryptoError::OldVersion(version));
        }
        if version > MAX_SIGN_VERSION {
            return Err(CryptoError::UnsupportedVersion(version));
        }

        if key.len() != V1_IDENTITY_KEY_SIZE {
            return Err(CryptoError::BadLength {
                step: "get IdentityKey key bytes",
                expected: V1_IDENTITY_KEY_SIZE,
                actual: key.len(),
            });
        }

        let secret = ed25519_dalek::SecretKey::from_bytes(key).map_err(|_| CryptoError::BadKey)?;

        let public = ed25519_dalek::PublicKey::from(&secret);

        let inner = ed25519_dalek::Keypair { secret, public };

        Ok(Self {
            inner,
            id: Identity { id: public },
        })
    }
}

impl SignInterface for ContainedIdKey {
    fn sign(&self, hash: &Hash) -> Signature {
        let inner = self.inner.sign(hash.digest());

        Signature {
            hash_version: hash.version(),
            id: self.id.clone(),
            inner,
        }
    }

    fn id(&self) -> &Identity {
        &self.id
    }

    fn self_export_lock(
        &self,
        csprng: &mut dyn CryptoSrc,
        receive_lock: &LockId,
    ) -> Option<IdentityLockbox> {
        let mut raw_secret = Vec::new(); // Make 100% certain this is zeroized at the end!
        self.encode_vec(&mut raw_secret);
        let lockbox_vec = crate::lock::lock_id_encrypt(
            receive_lock,
            csprng,
            LockboxType::Identity(false),
            &raw_secret,
        );
        raw_secret.zeroize();
        debug_assert!(raw_secret.iter().all(|&x| x == 0)); // You didn't remove the zeroize call, right?
        Some(identity_lockbox_from_parts(lockbox_vec))
    }

    fn self_export_stream(
        &self,
        csprng: &mut dyn CryptoSrc,
        receive_stream: &StreamKey,
    ) -> Option<IdentityLockbox> {
        let mut raw_secret = Vec::new(); // Make 100% certain this is zeroized at the end!
        self.encode_vec(&mut raw_secret);
        let lockbox_vec = crate::stream::stream_key_encrypt(
            receive_stream,
            csprng,
            LockboxType::Identity(true),
            &raw_secret,
        );
        raw_secret.zeroize();
        debug_assert!(raw_secret.iter().all(|&x| x == 0)); // You didn't remove the zeroize call, right?
        Some(identity_lockbox_from_parts(lockbox_vec))
    }
}

/// An annotated cryptographic signature.
///
/// Includes the version of hash that was signed, the [`Identity`] of the signer, and the signature
/// itself. These are always encoded together to make it easier to verify signatures appended to a
/// chunk of data.
///
/// A signature can be constructed in one of two ways: calling `sign(...)` on an [`IdentityKey`],
/// or by verifying an [`UnverifiedSignature`].
///
/// The byte encoding is specifically:
/// 1. The Hash version byte
/// 2. The encoded signing `Identity`
/// 3. The cryptographic signature's raw bytes
#[derive(Clone, PartialEq, Eq)]
pub struct Signature {
    hash_version: u8,
    id: Identity,
    inner: ed25519_dalek::Signature,
}

impl Signature {
    /// The version of the [`struct@Hash`] used in signature computation.
    pub fn hash_version(&self) -> u8 {
        self.hash_version
    }

    /// The public [`Identity`] of the [`IdentityKey`] that created this signature.
    pub fn signer(&self) -> &Identity {
        &self.id
    }

    /// Encode the signature onto a `Vec<u8>`. Adds the hash version, signing identity, and
    /// signature bytes.
    pub fn encode_vec(&self, buf: &mut Vec<u8>) {
        let signature = self.inner.as_ref();
        buf.push(self.hash_version);
        self.id.encode_vec(buf);
        buf.extend_from_slice(signature);
    }

    /// The length of the signature, in bytes, when encoded.
    pub fn size(&self) -> usize {
        1 + V1_IDENTITY_SIGN_SIZE + self.id.size()
    }
}

impl fmt::Debug for Signature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Signature")
            .field("hash_version", &self.hash_version)
            .field("signer", &self.id)
            .field("signature", &self.inner)
            .finish()
    }
}

/// A signature that has been read from a byte slice but hasn't been verified yet.
///
/// Verification can be done by getting the appropriate version of hash into the `verify(...)`
/// function.
///
/// # Example
/// ```
/// # use fog_crypto::identity::*;
/// # use fog_crypto::hash::Hash;
/// # use std::convert::TryFrom;
/// # use std::sync::Arc;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// #
/// # let mut csprng = rand::rngs::OsRng {};
/// # let key = IdentityKey::new_temp(&mut csprng);
/// # let mut encoded = Vec::new();
/// let data = b"I am some test data";
/// // ...
/// # let hash = Hash::new(&data[..]);
/// # let signature = key.sign(&hash);
/// # signature.encode_vec(&mut encoded);
///
/// let unverified = UnverifiedSignature::try_from(&encoded[..])?;
/// let hash_version = unverified.hash_version();
/// let hash = Hash::with_version(&data[..], hash_version)?;
/// match unverified.verify(&hash) {
///     Ok(verified) => {
///         println!("Got valid signature, signed by {}", verified.signer());
///     },
///     Err(_) => {
///         println!("Signature failed validation");
///     }
/// }
/// # Ok(())
/// # }
/// ```
#[derive(Clone, PartialEq, Eq)]
pub struct UnverifiedSignature {
    hash_version: u8,
    signature: ed25519_dalek::Signature,
    id: ed25519_dalek::PublicKey,
}

impl UnverifiedSignature {
    /// Get the version of hash needed to complete the signature.
    pub fn hash_version(&self) -> u8 {
        self.hash_version
    }

    /// Verify the Signature, producing a verified Signature or failing.
    pub fn verify(self, hash: &Hash) -> Result<Signature, CryptoError> {
        if hash.version() != self.hash_version {
            return Err(CryptoError::ObjectMismatch(
                "Verification step got wrong version of hash",
            ));
        }
        if self
            .id
            .verify_strict(hash.digest(), &self.signature)
            .is_err()
        {
            return Err(CryptoError::SignatureFailed);
        }
        Ok(Signature {
            hash_version: self.hash_version,
            id: Identity { id: self.id },
            inner: self.signature,
        })
    }
}

impl fmt::Debug for UnverifiedSignature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("UnverifiedSignature")
            .field("hash_version", &self.hash_version)
            .field("signer", &self.id)
            .field("signature", &self.signature.as_ref())
            .finish()
    }
}

impl TryFrom<&[u8]> for UnverifiedSignature {
    type Error = CryptoError;

    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        let (hash_version, value) = value.as_ref().split_first().ok_or(CryptoError::BadLength {
            step: "get signature hash version",
            expected: 1,
            actual: 0,
        })?;
        let hash_version = *hash_version;
        if hash_version < MIN_HASH_VERSION || hash_version > MAX_HASH_VERSION {
            return Err(CryptoError::UnsupportedVersion(hash_version));
        }
        let (&id_version, data) = value.split_first().ok_or(CryptoError::BadLength {
            step: "get signature id version",
            expected: 1,
            actual: 0,
        })?;
        if id_version != 1 {
            return Err(CryptoError::UnsupportedVersion(id_version));
        }

        let id_len = V1_IDENTITY_ID_SIZE;
        let raw_id = data.get(0..id_len).ok_or(CryptoError::BadLength {
            step: "get signature signer",
            expected: id_len,
            actual: data.len(),
        })?;
        let raw_signature = data.get(id_len..).ok_or(CryptoError::BadLength {
            step: "get signature data",
            expected: V1_IDENTITY_SIGN_SIZE,
            actual: data.len() - id_len,
        })?;
        let id = ed25519_dalek::PublicKey::from_bytes(raw_id).or(Err(CryptoError::BadKey))?;
        let signature = ed25519_dalek::Signature::try_from(raw_signature)
            .or(Err(CryptoError::SignatureFailed))?;
        Ok(UnverifiedSignature {
            hash_version,
            id,
            signature,
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn basics() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);
        assert_eq!(key.version(), DEFAULT_SIGN_VERSION);
        let key = IdentityKey::new_temp_with_version(&mut csprng, DEFAULT_SIGN_VERSION).unwrap();
        assert_eq!(key.version(), DEFAULT_SIGN_VERSION);
        let result = IdentityKey::new_temp_with_version(&mut csprng, 99u8);
        if let Err(CryptoError::UnsupportedVersion(99u8)) = result {
        } else {
            panic!("Didn't get expected error on new_temp_with_version");
        }
    }

    #[test]
    fn display() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);
        let disp_key = format!("{}", &key);
        let disp_id = format!("{}", key.id());
        let base58 = key.id().to_base58();
        assert_eq!(disp_key, disp_id);
        assert_eq!(disp_key, base58);
        assert!(disp_key.len() > 1);
    }

    #[test]
    fn base58() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);
        let mut base58 = key.id().to_base58();
        assert!(base58.len() > 1);
        let id = Identity::from_base58(&base58).unwrap();
        assert_eq!(&id, key.id());
        base58.push('a');
        base58.push('a');
        assert!(Identity::from_base58(&base58).is_err());
        base58.pop();
        base58.pop();
        base58.pop();
        assert!(Identity::from_base58(&base58).is_err());
    }

    #[test]
    fn encode() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);
        let id = key.id();
        let id_v0 = id.as_vec();
        let mut id_v1 = Vec::new();
        id.encode_vec(&mut id_v1);
        assert_eq!(id_v0.len(), id.size());
        assert_eq!(id_v0, id_v1);
        let id = Identity::try_from(&id_v0[..]).unwrap();
        assert_eq!(&id, key.id());
    }

    #[test]
    fn id_len() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);
        let id = key.id();
        let len = id.size();

        let mut enc = Vec::new();
        id.encode_vec(&mut enc);
        assert_eq!(len, enc.len());
        assert_eq!(len, id.as_vec().len());
    }

    #[test]
    fn signature_len() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);
        let hash = Hash::new(b"I am a test string");
        let sign = key.sign(&hash);
        let len = sign.size();

        let mut enc = Vec::new();
        sign.encode_vec(&mut enc);
        assert_eq!(len, enc.len());
    }

    #[test]
    fn sign() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);

        // Make new hash and check it
        let test_data = b"This is a test";
        let hash = Hash::new(test_data);
        let sign = key.sign(&hash);
        assert_eq!(
            sign.hash_version(),
            hash.version(),
            "Hash version in signature should match Hash's"
        );
        assert_eq!(
            sign.signer(),
            key.id(),
            "Identity in signature should match original Id"
        );

        // Encode/decode
        let mut enc = Vec::new();
        sign.encode_vec(&mut enc);
        let dec_sign = UnverifiedSignature::try_from(&enc[..])
            .expect("Wasn't able to decode an unverified signature")
            .verify(&hash)
            .expect("Wasn't able to verify the signature");
        assert_eq!(
            dec_sign.signer(),
            sign.signer(),
            "Signature Identities don't match"
        );
        assert_eq!(
            dec_sign.hash_version(),
            sign.hash_version(),
            "Signature hash versions don't match"
        );
    }

    #[test]
    fn wrong_hashes() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);

        // Make new hash and check it
        let test_data = b"This is a test";
        let hash = Hash::new(test_data);
        let bad_hash = Hash::new(b"Not the same data");
        let sign = key.sign(&hash);

        // Encode
        let mut enc = Vec::new();
        sign.encode_vec(&mut enc);
        // Decode: Fail the verification step
        let unverified = UnverifiedSignature::try_from(&enc[..])
            .expect("Wasn't able to decode an unverified signature");
        if let Err(CryptoError::SignatureFailed) = unverified.verify(&bad_hash) {
        } else {
            panic!(
                "Signature verification should fail with SignatureFailed when given the wrong Hash"
            );
        }
    }

    #[test]
    fn wrong_hash_versions() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);

        // Make new hash and check it
        let test_data = b"This is a test";
        let hash = Hash::new(test_data);
        let sign = key.sign(&hash);

        // Encode
        let mut enc = Vec::new();
        sign.encode_vec(&mut enc);

        // Decode: Fail with an unsupported hash
        enc[0] = 0;
        if let Err(CryptoError::UnsupportedVersion(0)) = UnverifiedSignature::try_from(&enc[..]) {
        } else {
            panic!("Signature decoding shouldn't permit a hash with version 0");
        }
        enc[0] = 255;
        if let Err(CryptoError::UnsupportedVersion(255)) = UnverifiedSignature::try_from(&enc[..]) {
        } else {
            panic!("Signature decoding shouldn't permit a hash with version 255");
        }
    }

    #[test]
    fn wrong_id_versions() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);

        // Make new hash and check it
        let test_data = b"This is a test";
        let hash = Hash::new(test_data);
        let sign = key.sign(&hash);

        // Encode
        let mut enc = Vec::new();
        sign.encode_vec(&mut enc);

        // Decode: Fail with an unsupported identity
        enc[1] = 0;
        if let Err(CryptoError::UnsupportedVersion(0)) = UnverifiedSignature::try_from(&enc[..]) {
        } else {
            panic!("Signature decoding shouldn't permit an identity with version 0");
        }
        enc[1] = 255;
        if let Err(CryptoError::UnsupportedVersion(255)) = UnverifiedSignature::try_from(&enc[..]) {
        } else {
            panic!("Signature decoding shouldn't permit an identity with version 255");
        }
    }

    #[test]
    fn corrupted_signature() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);

        // Make new hash and check it
        let test_data = b"This is a test";
        let hash = Hash::new(test_data);
        let sign = key.sign(&hash);

        // Encode
        let mut enc = Vec::new();
        sign.encode_vec(&mut enc);

        // 1st Check: corrupt signature so uppermost 3 bits are inverted
        // This has a different failure path than other corruptions, as ed25519_dalek checks the
        // uppermost bits during initial reading, as a valid signature should have them all zeroed.
        let last = enc.last_mut().unwrap();
        *last = !*last;
        let unverified = UnverifiedSignature::try_from(&enc[..]);
        if let Err(CryptoError::SignatureFailed) = unverified {
        } else {
            panic!("Should fail with SignatureFailed when the last signature byte is wrong");
        }
        // 2nd Check: corrupt other signature bytes
        let last = enc.last_mut().unwrap();
        *last = !*last;
        let len = enc.len();
        let near_last = enc.get_mut(len - 2).unwrap();
        *near_last = !*near_last;
        let unverified = UnverifiedSignature::try_from(&enc[..]).unwrap();
        if let Err(CryptoError::SignatureFailed) = unverified.verify(&hash) {
        } else {
            panic!("Should fail with SignatureFailed when the signature bytes are wrong");
        }
    }

    #[test]
    fn corrupted_id() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);

        // Make new hash and check it
        let test_data = b"This is a test";
        let hash = Hash::new(test_data);
        let sign = key.sign(&hash);

        // Encode
        let mut enc = Vec::new();
        sign.encode_vec(&mut enc);
        // Decode: Fail with a changed identity
        enc[4] = !enc[4];
        match UnverifiedSignature::try_from(&enc[..]) {
            Err(CryptoError::BadKey) => {}
            Ok(unverified) => {
                if let Err(CryptoError::SignatureFailed) = unverified.verify(&hash) {
                } else {
                    panic!("Should fail with SignatureFailed when identity is wrong for signature");
                }
            }
            _ => {
                panic!("Should fail with BadKey when the identity is corrupted and ed25519_dalek can tell");
            }
        }
    }

    #[test]
    fn substitute_wrong_id() {
        let mut csprng = rand::rngs::OsRng;
        let key = IdentityKey::new_temp(&mut csprng);
        let other_id = IdentityKey::new_temp(&mut csprng);

        // Make new hash and check it
        let test_data = b"This is a test";
        let hash = Hash::new(test_data);
        let sign = key.sign(&hash);

        let mut enc = Vec::new();
        sign.encode_vec(&mut enc);
        for (dest, src) in enc.iter_mut().skip(1).zip(other_id.id().as_vec().iter()) {
            *dest = *src;
        }
        match UnverifiedSignature::try_from(&enc[..]) {
            Err(CryptoError::BadKey) => {
                panic!("Key should be valid, just wrong for the signature");
            }
            Ok(unverified) => {
                if let Err(CryptoError::SignatureFailed) = unverified.verify(&hash) {
                } else {
                    panic!("Should fail with SignatureFailed when identity is wrong for signature");
                }
            }
            _ => {
                panic!("Shouldn't fail on the initial decoding to an UnverifiedSignature");
            }
        }
    }
}