fn_dsa/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#![no_std]
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]

//! # FN-DSA implementation
//!
//! This crate is really a wrapper for the [fn-dsa-kgen], [fn-dsa-sign]
//! and [fn-dsa-vrfy] crates that implement the various elements of the
//! FN-DSA signature algorithm. All the relevant types, functions and
//! constants are re-exported here. Users of this implementation only
//! need to import this crate; the division into sub-crates is meant to
//! help with specialized situations where code footprint reduction is
//! important (typically, embedded systems that only need to verify
//! signatures, but not generate keys or signatures).
//!
//! ## WARNING
//!
//! **The FN-DSA standard is currently being drafted, but no version has
//! been published yet. When published, it may differ from the exact
//! scheme implemented in this crate, in particular with regard to key
//! encodings, message pre-hashing, and domain separation. Key pairs
//! generated with this crate MAY fail to be interoperable with the final
//! FN-DSA standard. This implementation is expected to be adjusted to
//! the FN-DSA standard when published (before the 1.0 version
//! release).**
//!
//! ## Implementation notes
//!
//! The whole code is written in pure Rust and is compatible with `no_std`.
//! It has no external dependencies except [rand_core] and [zeroize] (unit
//! tests use a few extra crates).
//!
//! On x86 (both 32-bit and 64-bit), AVX2 opcodes are automatically used
//! for faster operations if their support is detected at runtime. No
//! special compilation flag nor extra runtime check is needed for that;
//! the compiled code remains compatible with plain non-AVX2-aware CPUs.
//!
//! On 64-bit x86 (`x86_64`) and ARMv8 (`aarch64`, `arm64ec`), native
//! (hardware) floating-point support is used, since in both these cases
//! the architecture ABI mandates a strict IEEE-754 unit and can more or
//! less be assumed to operate in constant-time for non-exceptional
//! inputs. This makes signature generation much faster on these
//! platforms (on `x86_64`, this furthermore combines with AVX2
//! optimizations if available in the current CPU). On other platforms, a
//! portable emulation of floating-point operations is used (this
//! emulation makes a best effort at operating in constant-time, though
//! some recent compiler optimizations might introduce variable-time
//! operations). Key pair generation and signature verification do not
//! use floating-point operations at all.
//!
//! The key pair generation implementation is a translation of the
//! [ntrugen] code, which is faster than the originally submitted Falcon
//! code. The signature generation engine follows the steps of the
//! `sign_dyn` operations from the original [falcon] code (indeed, an
//! internal unit tests checks that the sampler returns the same values
//! for the same inputs). Achieved performance on `x86_64` is very close
//! to that offered by the C code (signature verification performance is
//! even better).
//!
//! ## Example usage
//!
//! ```ignore
//! use rand_core::OsRng;
//! use fn_dsa::{
//!     sign_key_size, vrfy_key_size, signature_size, FN_DSA_LOGN_512,
//!     KeyPairGenerator, KeyPairGeneratorStandard,
//!     SigningKey, SigningKeyStandard,
//!     VerifyingKey, VerifyingKeyStandard,
//!     DOMAIN_NONE, HASH_ID_RAW,
//! };
//! 
//! // Generate key pair.
//! let mut kg = KeyPairGeneratorStandard::default();
//! let mut sign_key = [0u8; sign_key_size(FN_DSA_LOGN_512)];
//! let mut vrfy_key = [0u8; vrfy_key_size(FN_DSA_LOGN_512)];
//! kg.keygen(FN_DSA_LOGN_512, &mut OsRng, &mut sign_key, &mut vrfy_key);
//! 
//! // Sign a message with the signing key.
//! let mut sk = SigningKeyStandard::decode(encoded_signing_key)?;
//! let mut sig = vec![0u8; signature_size(sk.get_logn())];
//! sk.sign(&mut OsRng, &DOMAIN_NONE, &HASH_ID_RAW, b"message", &mut sig);
//! 
//! // Verify a signature with the verifying key.
//! match VerifyingKeyStandard::decode(encoded_verifying_key) {
//!     Some(vk) => {
//!         if vk.verify(sig, &DOMAIN_NONE, &HASH_ID_RAW, b"message") {
//!             // signature is valid
//!         } else {
//!             // signature is not valid
//!         }
//!     }
//!     _ => {
//!         // could not decode verifying key
//!     }
//! }
//! ```
//!
//! [fn-dsa-kgen]: https://crates.io/crates/fn_dsa_kgen
//! [fn-dsa-sign]: https://crates.io/crates/fn_dsa_sign
//! [fn-dsa-vrfy]: https://crates.io/crates/fn_dsa_vrfy
//! [falcon]: https://falcon-sign.info/
//! [ntrugen]: https://eprint.iacr.org/2023/290
//! [rand_core]: https://crates.io/crates/rand_core
//! [zeroize]: https://crates.io/crates/zeroize

pub use fn_dsa_comm::{
    sign_key_size, vrfy_key_size, signature_size,
    FN_DSA_LOGN_512, FN_DSA_LOGN_1024,
    HashIdentifier,
    HASH_ID_RAW,
    HASH_ID_ORIGINAL_FALCON,
    HASH_ID_SHA256,
    HASH_ID_SHA384,
    HASH_ID_SHA512,
    HASH_ID_SHA512_256,
    HASH_ID_SHA3_256,
    HASH_ID_SHA3_384,
    HASH_ID_SHA3_512,
    HASH_ID_SHAKE128,
    HASH_ID_SHAKE256,
    DomainContext,
    DOMAIN_NONE,
    CryptoRng, RngCore, RngError,
};
pub use fn_dsa_comm::shake::{SHAKE, SHAKE128, SHAKE256};
pub use fn_dsa_kgen::{KeyPairGenerator, KeyPairGeneratorStandard, KeyPairGeneratorWeak, KeyPairGenerator512, KeyPairGenerator1024};
pub use fn_dsa_sign::{SigningKey, SigningKeyStandard, SigningKeyWeak, SigningKey512, SigningKey1024};
pub use fn_dsa_vrfy::{VerifyingKey, VerifyingKeyStandard, VerifyingKeyWeak, VerifyingKey512, VerifyingKey1024};

#[cfg(test)]
mod tests {
    use super::*;

    // Fake RNG for tests only; it is actually a wrapper around SHAKE256,
    // initialized with a seed.
    struct FakeRNG(SHAKE256);

    impl FakeRNG {
        fn new(seed: &[u8]) -> Self {
            let mut sh = SHAKE256::new();
            sh.inject(seed);
            sh.flip();
            Self(sh)
        }
    }

    impl CryptoRng for FakeRNG {}
    impl RngCore for FakeRNG {
        fn next_u32(&mut self) -> u32 {
            let mut buf = [0u8; 4];
            self.0.extract(&mut buf);
            u32::from_le_bytes(buf)
        }
        fn next_u64(&mut self) -> u64 {
            let mut buf = [0u8; 8];
            self.0.extract(&mut buf);
            u64::from_le_bytes(buf)
        }
        fn fill_bytes(&mut self, dest: &mut [u8]) {
            self.0.extract(dest);
        }
        fn try_fill_bytes(&mut self, dest: &mut [u8])
            -> Result<(), RngError>
        {
            self.0.extract(dest);
            Ok(())
        }
    }

    fn self_test_inner<KG: KeyPairGenerator,
        SK: SigningKey, VK: VerifyingKey>(logn: u32)
    {
        let mut kg = KG::default();
        let mut sk_buf = [0u8; sign_key_size(10)];
        let mut vk_buf = [0u8; vrfy_key_size(10)];
        let mut vk2_buf = [0u8; vrfy_key_size(10)];
        let mut sig_buf = [0u8; signature_size(10)];
        let sk_e = &mut sk_buf[..sign_key_size(logn)];
        let vk_e = &mut vk_buf[..vrfy_key_size(logn)];
        let vk2_e = &mut vk2_buf[..vrfy_key_size(logn)];
        let sig = &mut sig_buf[..signature_size(logn)];
        for t in 0..2 {
            // We use a reproducible source of random bytes.
            let mut rng = FakeRNG::new(&[logn as u8, t]);

            // Generate key pair.
            kg.keygen(logn, &mut rng, sk_e, vk_e);

            // Decode private key and check that it matches the public key.
            let mut sk = SK::decode(sk_e).unwrap();
            assert!(sk.get_logn() == logn);
            sk.to_verifying_key(vk2_e);
            assert!(vk_e == vk2_e);

            // Sign a test message.
            sk.sign(&mut rng, &DOMAIN_NONE, &HASH_ID_RAW, &b"test1"[..], sig);

            // Verify the signature. Check that modifying the context,
            // message or signature results in a verification failure.
            let vk = VK::decode(&vk_e).unwrap();
            assert!(vk.verify(sig,
                &DOMAIN_NONE, &HASH_ID_RAW, &b"test1"[..]));
            assert!(!vk.verify(sig,
                &DOMAIN_NONE, &HASH_ID_RAW, &b"test2"[..]));
            assert!(!vk.verify(sig,
                &DomainContext(b"other"), &HASH_ID_RAW, &b"test1"[..]));
            sig[sig.len() >> 1] ^= 0x40;
            assert!(!vk.verify(sig,
                &DOMAIN_NONE, &HASH_ID_RAW, &b"test1"[..]));
        }
    }

    #[test]
    fn self_test() {
        for logn in 9..10 {
            self_test_inner::<KeyPairGeneratorStandard,
                SigningKeyStandard, VerifyingKeyStandard>(logn);
        }
        for logn in 2..8 {
            self_test_inner::<KeyPairGeneratorWeak,
                SigningKeyWeak, VerifyingKeyWeak>(logn);
        }
    }
}