fmodel_rust/view.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
use crate::{EvolveFunction, InitialStateFunction, Sum};
/// [View] represents the event handling algorithm, responsible for translating the events into denormalized state, which is more adequate for querying.
/// It has two generic parameters `S`/State, `E`/Event , representing the type of the values that View may contain or use.
/// `'a` is used as a lifetime parameter, indicating that all references contained within the struct (e.g., references within the function closures) must have a lifetime that is at least as long as 'a.
///
/// ## Example
/// ```
/// use fmodel_rust::view::View;
///
/// fn view<'a>() -> View<'a, OrderViewState, OrderEvent> {
/// View {
/// // Exhaustive pattern matching is used to handle the events (modeled as Enum - SUM/OR type).
/// evolve: Box::new(|state, event| {
/// let mut new_state = state.clone();
/// match event {
/// OrderEvent::Created(created_event) => {
/// new_state.order_id = created_event.order_id;
/// new_state.customer_name = created_event.customer_name.to_owned();
/// new_state.items = created_event.items.to_owned();
/// }
/// OrderEvent::Updated(updated_event) => {
/// new_state.items = updated_event.updated_items.to_owned();
/// }
/// OrderEvent::Cancelled(_) => {
/// new_state.is_cancelled = true;
/// }
/// }
/// new_state
/// }),
/// initial_state: Box::new(|| OrderViewState {
/// order_id: 0,
/// customer_name: "".to_string(),
/// items: Vec::new(),
/// is_cancelled: false,
/// }),
/// }
/// }
///
/// #[derive(Debug)]
/// pub enum OrderEvent {
/// Created(OrderCreatedEvent),
/// Updated(OrderUpdatedEvent),
/// Cancelled(OrderCancelledEvent),
/// }
///
/// #[derive(Debug)]
/// pub struct OrderCreatedEvent {
/// pub order_id: u32,
/// pub customer_name: String,
/// pub items: Vec<String>,
/// }
///
/// #[derive(Debug)]
/// pub struct OrderUpdatedEvent {
/// pub order_id: u32,
/// pub updated_items: Vec<String>,
/// }
///
/// #[derive(Debug)]
/// pub struct OrderCancelledEvent {
/// pub order_id: u32,
/// }
///
/// #[derive(Debug, Clone)]
/// struct OrderViewState {
/// order_id: u32,
/// customer_name: String,
/// items: Vec<String>,
/// is_cancelled: bool,
/// }
///
/// let view: View<OrderViewState, OrderEvent> = view();
/// let order_created_event = OrderEvent::Created(OrderCreatedEvent {
/// order_id: 1,
/// customer_name: "John Doe".to_string(),
/// items: vec!["Item 1".to_string(), "Item 2".to_string()],
/// });
/// let new_state = (view.evolve)(&(view.initial_state)(), &order_created_event);
/// ```
pub struct View<'a, S: 'a, E: 'a> {
/// The `evolve` function is the main state evolution algorithm.
pub evolve: EvolveFunction<'a, S, E>,
/// The `initial_state` function is the initial state.
pub initial_state: InitialStateFunction<'a, S>,
}
impl<'a, S, E> View<'a, S, E> {
/// Maps the View over the S/State type parameter.
/// Creates a new instance of [View]`<S2, E>`.
pub fn map_state<S2, F1, F2>(self, f1: &'a F1, f2: &'a F2) -> View<'a, S2, E>
where
F1: Fn(&S2) -> S + Send + Sync,
F2: Fn(&S) -> S2 + Send + Sync,
{
let new_evolve = Box::new(move |s2: &S2, e: &E| {
let s = f1(s2);
f2(&(self.evolve)(&s, e))
});
let new_initial_state = Box::new(move || f2(&(self.initial_state)()));
View {
evolve: new_evolve,
initial_state: new_initial_state,
}
}
/// Maps the View over the E/Event type parameter.
/// Creates a new instance of [View]`<S, E2>`.
pub fn map_event<E2, F>(self, f: &'a F) -> View<'a, S, E2>
where
F: Fn(&E2) -> E + Send + Sync,
{
let new_evolve = Box::new(move |s: &S, e2: &E2| {
let e = f(e2);
(self.evolve)(s, &e)
});
let new_initial_state = Box::new(move || (self.initial_state)());
View {
evolve: new_evolve,
initial_state: new_initial_state,
}
}
/// Combines two views into one.
/// Creates a new instance of a View by combining two views of type `S`, `E` and `S2`, `E2` into a new view of type `(S, S2)`, `Sum<E, E2>`
pub fn combine<S2: Clone, E2>(self, view2: View<'a, S2, E2>) -> View<'a, (S, S2), Sum<E, E2>>
where
S: Clone,
S2: Clone,
{
let new_evolve = Box::new(move |s: &(S, S2), e: &Sum<E, E2>| match e {
Sum::First(e) => {
let s1 = &s.0;
let new_state = (self.evolve)(s1, e);
(new_state, s.1.to_owned())
}
Sum::Second(e) => {
let s2 = &s.1;
let new_state = (view2.evolve)(s2, e);
(s.0.to_owned(), new_state)
}
});
let new_initial_state = Box::new(move || {
let s1 = (self.initial_state)();
let s2 = (view2.initial_state)();
(s1, s2)
});
View {
evolve: new_evolve,
initial_state: new_initial_state,
}
}
}
/// Formalizes the `State Computation` algorithm for the `view` to handle events based on the current state, and produce new state.
pub trait ViewStateComputation<E, S> {
/// Computes new state based on the current state and the events.
fn compute_new_state(&self, current_state: Option<S>, events: &[&E]) -> S;
}
impl<'a, S, E> ViewStateComputation<E, S> for View<'a, S, E> {
/// Computes new state based on the current state and the events.
fn compute_new_state(&self, current_state: Option<S>, events: &[&E]) -> S {
let effective_current_state = current_state.unwrap_or_else(|| (self.initial_state)());
events.iter().fold(effective_current_state, |state, event| {
(self.evolve)(&state, event)
})
}
}