fmodel_rust/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#![deny(missing_docs)]
//! # FModel Rust
//!
//! When you’re developing an information system to automate the activities of the business, you are modeling the business.
//! The abstractions that you design, the behaviors that you implement, and the UI interactions that you build all reflect
//! the business — together, they constitute the model of the domain.
//!
//! ![event-modeling](https://github.com/fraktalio/fmodel-ts/raw/main/.assets/event-modeling.png)
//!
//! ## `IOR<Library, Inspiration>`
//!
//! This crate can be used as a library, or as an inspiration, or both. It provides just enough tactical Domain-Driven
//! Design patterns, optimised for Event Sourcing and CQRS.
//!
//! ![onion architecture image](https://github.com/fraktalio/fmodel/blob/d8643a7d0de30b79f0b904f7a40233419c463fc8/.assets/onion.png?raw=true)
//!
//!## Decider
//!
//! `Decider` is a datatype/struct that represents the main decision-making algorithm. It belongs to the Domain layer. It
//! has three
//! generic parameters `C`, `S`, `E` , representing the type of the values that `Decider` may contain or use.
//! `Decider` can be specialized for any type `C` or `S` or `E` because these types do not affect its
//! behavior. `Decider` behaves the same for `C`=`Int` or `C`=`YourCustomType`, for example.
//!
//! `Decider` is a pure domain component.
//!
//! - `C` - Command
//! - `S` - State
//! - `E` - Event
//!
//! ```rust
//! pub type DecideFunction<'a, C, S, E> = Box<dyn Fn(&C, &S) -> Vec<E> + 'a + Send + Sync>;
//! pub type EvolveFunction<'a, S, E> = Box<dyn Fn(&S, &E) -> S + 'a + Send + Sync>;
//! pub type InitialStateFunction<'a, S> = Box<dyn Fn() -> S + 'a + Send + Sync>;
//!
//! pub struct Decider<'a, C: 'a, S: 'a, E: 'a> {
//!     pub decide: DecideFunction<'a, C, S, E>,
//!     pub evolve: EvolveFunction<'a, S, E>,
//!     pub initial_state: InitialStateFunction<'a, S>,
//! }
//! ```
//!
//! Additionally, `initialState` of the Decider is introduced to gain more control over the initial state of the Decider.
//!
//! ### Event-sourcing aggregate
//!
//! [aggregate::EventSourcedAggregate]  is using/delegating a `Decider` to handle commands and produce new events.
//!
//! It belongs to the Application layer.
//!
//! In order to handle the command, aggregate needs to fetch the current state (represented as a list/vector of events)
//! via `EventRepository.fetchEvents` async function, and then delegate the command to the decider which can produce new
//! events as
//! a result. Produced events are then stored via `EventRepository.save` async function.
//!
//! It is a formalization of the event sourced information system.
//!
//! ### State-stored aggregate
//!
//! [aggregate::StateStoredAggregate] is using/delegating a `Decider` to handle commands and produce new state.
//!
//! It belongs to the Application layer.
//!
//! In order to handle the command, aggregate needs to fetch the current state via `StateRepository.fetchState` async function first,
//! and then
//! delegate the command to the decider which can produce new state as a result. New state is then stored
//! via `StateRepository.save` async function.
//!
//! ## View
//!
//! `View`  is a datatype that represents the event handling algorithm, responsible for translating the events into
//! denormalized state, which is more adequate for querying. It belongs to the Domain layer. It is usually used to create
//! the view/query side of the CQRS pattern. Obviously, the command side of the CQRS is usually event-sourced aggregate.
//!
//! It has two generic parameters `S`, `E`, representing the type of the values that `View` may contain or use.
//! `View` can be specialized for any type of `S`, `E` because these types do not affect its behavior.
//! `View` behaves the same for `E`=`Int` or `E`=`YourCustomType`, for example.
//!
//! `View` is a pure domain component.
//!
//! - `S` - State
//! - `E` - Event
//!
//! ```rust
//! pub type EvolveFunction<'a, S, E> = Box<dyn Fn(&S, &E) -> S + 'a + Send + Sync>;
//! pub type InitialStateFunction<'a, S> = Box<dyn Fn() -> S + 'a + Send + Sync>;
//!
//! pub struct View<'a, S: 'a, E: 'a> {
//!     pub evolve: EvolveFunction<'a, S, E>,
//!     pub initial_state: InitialStateFunction<'a, S>,
//! }
//! ```
//!
//! ### Materialized View
//!
//! [materialized_view::MaterializedView] is using/delegating a `View` to handle events of type `E` and to maintain
//! a state of denormalized
//! projection(s) as a
//! result. Essentially, it represents the query/view side of the CQRS pattern.
//!
//! It belongs to the Application layer.
//!
//! In order to handle the event, materialized view needs to fetch the current state via `ViewStateRepository.fetchState`
//! suspending function first, and then delegate the event to the view, which can produce new state as a result. New state
//! is then stored via `ViewStateRepository.save` suspending function.
//!
//!
//! ## Saga
//!
//! `Saga` is a datatype that represents the central point of control, deciding what to execute next (`A`), based on the action result (`AR`).
//! It has two generic parameters `AR`/Action Result, `A`/Action , representing the type of the values that Saga may contain or use.
//! `'a` is used as a lifetime parameter, indicating that all references contained within the struct (e.g., references within the function closures) must have a lifetime that is at least as long as 'a.
//!
//! `Saga` is a pure domain component.
//!
//! - `AR` - Action Result/Event
//! - `A` - Action/Command
//!
//! ```rust
//! pub type ReactFunction<'a, AR, A> = Box<dyn Fn(&AR) -> Vec<A> + 'a + Send + Sync>;
//! pub struct Saga<'a, AR: 'a, A: 'a> {
//!     pub react: ReactFunction<'a, AR, A>,
//! }
//! ```
//!
//! ### Saga Manager
//!
//! [saga_manager::SagaManager] is using/delegating a `Saga` to react to the action result and to publish the new actions.
//!
//! It belongs to the Application layer.
//!
//! It is using a [saga::Saga] to react to the action result and to publish the new actions.
//! It is using an [saga_manager::ActionPublisher] to publish the new actions.
//!
//! ## Clear separation between data and behaviour
//!
//!```rust
//! use fmodel_rust::decider::Decider;
//! // ## Algebraic Data Types
//! //
//! // In Rust, we can use ADTs to model our application's domain entities and relationships in a functional way, clearly defining the set of possible values and states.
//! // Rust has two main types of ADTs: `enum` and `struct`.
//! //
//! // - `enum` is used to define a type that can take on one of several possible variants - modeling a `sum/OR` type.
//! // - `struct` is used to express a type that has named fields - modeling a `product/AND` type.
//! //
//! // ADTs will help with
//! //
//! // - representing the business domain in the code accurately
//! // - enforcing correctness
//! // - reducing the likelihood of bugs.
//!
//!
//! // ### `C` / Command / Intent to change the state of the system
//!
//! // models Sum/Or type / multiple possible variants
//! pub enum OrderCommand {
//!     Create(CreateOrderCommand),
//!     Update(UpdateOrderCommand),
//!     Cancel(CancelOrderCommand),
//! }
//! // models Product/And type / a concrete variant, consisting of named fields
//! pub struct CreateOrderCommand {
//!     pub order_id: u32,
//!     pub customer_name: String,
//!     pub items: Vec<String>,
//! }
//! // models Product/And type / a concrete variant, consisting of named fields
//! pub struct UpdateOrderCommand {
//!     pub order_id: u32,
//!     pub new_items: Vec<String>,
//! }
//! // models Product/And type / a concrete variant, consisting of named fields
//! pub struct CancelOrderCommand {
//!     pub order_id: u32,
//! }
//!
//! // ### `E` / Event / Fact
//!
//! // models Sum/Or type / multiple possible variants
//! pub enum OrderEvent {
//!     Created(OrderCreatedEvent),
//!     Updated(OrderUpdatedEvent),
//!     Cancelled(OrderCancelledEvent),
//! }
//! // models Product/And type / a concrete variant, consisting of named fields
//! pub struct OrderCreatedEvent {
//!     pub order_id: u32,
//!     pub customer_name: String,
//!     pub items: Vec<String>,
//! }
//! // models Product/And type / a concrete variant, consisting of named fields
//! pub struct OrderUpdatedEvent {
//!     pub order_id: u32,
//!     pub updated_items: Vec<String>,
//! }
//! // models Product/And type / a concrete variant, consisting of named fields
//! pub struct OrderCancelledEvent {
//!     pub order_id: u32,
//! }
//!
//! // ### `S` / State / Current state of the system/aggregate/entity
//! #[derive(Clone)]
//! struct OrderState {
//!     order_id: u32,
//!     customer_name: String,
//!     items: Vec<String>,
//!     is_cancelled: bool,
//! }
//!
//! // ## Modeling the Behaviour of our domain
//! //
//! //  - algebraic data types form the structure of our entities (commands, state, and events).
//! //  - functions/lambda offers the algebra of manipulating the entities in a compositional manner, effectively modeling the behavior.
//! //
//! // This leads to modularity in design and a clear separation of the entity’s structure and functions/behaviour of the entity.
//! //
//! // Fmodel library offers generic and abstract components to specialize in for your specific case/expected behavior
//!
//! fn decider<'a>() -> Decider<'a, OrderCommand, OrderState, OrderEvent> {
//!     Decider {
//!         // Your decision logic goes here.
//!         decide: Box::new(|command, state| match command {
//!             // Exhaustive pattern matching on the command
//!             OrderCommand::Create(create_cmd) => {
//!                 vec![OrderEvent::Created(OrderCreatedEvent {
//!                     order_id: create_cmd.order_id,
//!                     customer_name: create_cmd.customer_name.to_owned(),
//!                     items: create_cmd.items.to_owned(),
//!                 })]
//!             }
//!             OrderCommand::Update(update_cmd) => {
//!                 // Your validation logic goes here
//!                 if state.order_id == update_cmd.order_id {
//!                     vec![OrderEvent::Updated(OrderUpdatedEvent {
//!                         order_id: update_cmd.order_id,
//!                         updated_items: update_cmd.new_items.to_owned(),
//!                     })]
//!                 } else {
//!                     // In case of validation failure, return empty list of events or error event
//!                     vec![]
//!                 }
//!             }
//!             OrderCommand::Cancel(cancel_cmd) => {
//!                 // Your validation logic goes here
//!                 if state.order_id == cancel_cmd.order_id {
//!                     vec![OrderEvent::Cancelled(OrderCancelledEvent {
//!                         order_id: cancel_cmd.order_id,
//!                     })]
//!                 } else {
//!                     // In case of validation failure, return empty list of events or error event
//!                     vec![]
//!                 }
//!             }
//!         }),
//!         // Evolve the state based on the event(s)
//!         evolve: Box::new(|state, event| {
//!             let mut new_state = state.clone();
//!             // Exhaustive pattern matching on the event
//!             match event {
//!                 OrderEvent::Created(created_event) => {
//!                     new_state.order_id = created_event.order_id;
//!                     new_state.customer_name = created_event.customer_name.to_owned();
//!                     new_state.items = created_event.items.to_owned();
//!                 }
//!                 OrderEvent::Updated(updated_event) => {
//!                     new_state.items = updated_event.updated_items.to_owned();
//!                 }
//!                 OrderEvent::Cancelled(_) => {
//!                     new_state.is_cancelled = true;
//!                 }
//!             }
//!             new_state
//!         }),
//!         // Initial state
//!         initial_state: Box::new(|| OrderState {
//!             order_id: 0,
//!             customer_name: "".to_string(),
//!             items: Vec::new(),
//!             is_cancelled: false,
//!         }),
//!     }
//! }
//! ```
//!
//! ## Examples
//!
//! - [Gift Card Demo - with Axon](https://!github.com/AxonIQ/axon-rust/tree/main/gift-card-rust)
//! - [FModel Rust Tests](https://!github.com/fraktalio/fmodel-rust/tree/main/tests)
//!
//! ## GitHub
//!
//! - [FModel Rust](https://!github.com/fraktalio/fmodel-rust)
//!
//! ## FModel in other languages
//!
//!  - [FModel Kotlin](https://!github.com/fraktalio/fmodel/)
//!  - [FModel TypeScript](https://!github.com/fraktalio/fmodel-ts/)
//!  - [FModel Java](https://!github.com/fraktalio/fmodel-java/)
//!
//! ## Credits
//!
//! Special credits to `Jérémie Chassaing` for sharing his [research](https://!www.youtube.com/watch?v=kgYGMVDHQHs)
//! and `Adam Dymitruk` for hosting the meetup.
//!
//! ---
//! Created with `love` by [Fraktalio](https://!fraktalio.com/)

use serde::{Deserialize, Serialize};

/// Aggregate module - belongs to the `Application` layer - composes pure logic and effects (fetching, storing)
pub mod aggregate;
/// Decider module - belongs to the `Domain` layer - pure decision making component - pure logic
pub mod decider;
/// Materialized View module - belongs to the `Application` layer - composes pure event handling algorithm and effects (fetching, storing)
pub mod materialized_view;
/// Saga module - belongs to the `Domain` layer - pure mapper of action results/events into new actions/commands
pub mod saga;
/// Saga Manager module - belongs to the `Application` layer - composes pure saga and effects (publishing)
pub mod saga_manager;
/// View module - belongs to the `Domain` layer - pure event handling algorithm
pub mod view;

/// The [DecideFunction] function is used to decide which events to produce based on the command and the current state.
pub type DecideFunction<'a, C, S, E> = Box<dyn Fn(&C, &S) -> Vec<E> + 'a + Send + Sync>;
/// The [EvolveFunction] function is used to evolve the state based on the current state and the event.
pub type EvolveFunction<'a, S, E> = Box<dyn Fn(&S, &E) -> S + 'a + Send + Sync>;
/// The [InitialStateFunction] function is used to produce the initial state.
pub type InitialStateFunction<'a, S> = Box<dyn Fn() -> S + 'a + Send + Sync>;
/// The [ReactFunction] function is used to decide what actions/A to execute next based on the action result/AR.
pub type ReactFunction<'a, AR, A> = Box<dyn Fn(&AR) -> Vec<A> + 'a + Send + Sync>;

/// Define the generic Combined/Sum Enum
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)]
pub enum Sum<A, B> {
    /// First variant
    First(A),
    /// Second variant
    Second(B),
}