fmodel_rust/decider.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
use crate::{DecideFunction, EvolveFunction, InitialStateFunction, Sum};
/// [Decider] represents the main decision-making algorithm.
/// It has three generic parameters `C`/`Command`, `S`/`State`, `E`/`Event` , representing the type of the values that Decider may contain or use.
/// `'a` is used as a lifetime parameter, indicating that all references contained within the struct (e.g., references within the function closures) must have a lifetime that is at least as long as 'a.
///
/// ## Example
/// ```
/// use fmodel_rust::decider::{Decider, EventComputation, StateComputation};
///
/// fn decider<'a>() -> Decider<'a, OrderCommand, OrderState, OrderEvent> {
/// Decider {
/// // Exhaustive pattern matching is used to handle the commands (modeled as Enum - SUM/OR type).
/// decide: Box::new(|command, state| {
/// match command {
/// OrderCommand::Create(create_cmd) => {
/// vec![OrderEvent::Created(OrderCreatedEvent {
/// order_id: create_cmd.order_id,
/// customer_name: create_cmd.customer_name.to_owned(),
/// items: create_cmd.items.to_owned(),
/// })]
/// }
/// OrderCommand::Update(update_cmd) => {
/// if state.order_id == update_cmd.order_id {
/// vec![OrderEvent::Updated(OrderUpdatedEvent {
/// order_id: update_cmd.order_id,
/// updated_items: update_cmd.new_items.to_owned(),
/// })]
/// } else {
/// vec![]
/// }
/// }
/// OrderCommand::Cancel(cancel_cmd) => {
/// if state.order_id == cancel_cmd.order_id {
/// vec![OrderEvent::Cancelled(OrderCancelledEvent {
/// order_id: cancel_cmd.order_id,
/// })]
/// } else {
/// vec![]
/// }
/// }
/// }
/// }),
/// // Exhaustive pattern matching is used to handle the events (modeled as Enum - SUM/OR type).
/// evolve: Box::new(|state, event| {
/// let mut new_state = state.clone();
/// match event {
/// OrderEvent::Created(created_event) => {
/// new_state.order_id = created_event.order_id;
/// new_state.customer_name = created_event.customer_name.to_owned();
/// new_state.items = created_event.items.to_owned();
/// }
/// OrderEvent::Updated(updated_event) => {
/// new_state.items = updated_event.updated_items.to_owned();
/// }
/// OrderEvent::Cancelled(_) => {
/// new_state.is_cancelled = true;
/// }
/// }
/// new_state
/// }),
/// initial_state: Box::new(|| OrderState {
/// order_id: 0,
/// customer_name: "".to_string(),
/// items: Vec::new(),
/// is_cancelled: false,
/// }),
/// }
/// }
///
/// // Modeling the commands, events, and state. Enum is modeling the SUM/OR type, and struct is modeling the PRODUCT/AND type.
/// #[derive(Debug)]
/// pub enum OrderCommand {
/// Create(CreateOrderCommand),
/// Update(UpdateOrderCommand),
/// Cancel(CancelOrderCommand),
/// }
///
/// #[derive(Debug)]
/// pub struct CreateOrderCommand {
/// pub order_id: u32,
/// pub customer_name: String,
/// pub items: Vec<String>,
/// }
///
/// #[derive(Debug)]
/// pub struct UpdateOrderCommand {
/// pub order_id: u32,
/// pub new_items: Vec<String>,
/// }
///
/// #[derive(Debug)]
/// pub struct CancelOrderCommand {
/// pub order_id: u32,
/// }
///
/// #[derive(Debug, PartialEq)]
/// pub enum OrderEvent {
/// Created(OrderCreatedEvent),
/// Updated(OrderUpdatedEvent),
/// Cancelled(OrderCancelledEvent),
/// }
///
/// #[derive(Debug, PartialEq)]
/// pub struct OrderCreatedEvent {
/// pub order_id: u32,
/// pub customer_name: String,
/// pub items: Vec<String>,
/// }
///
/// #[derive(Debug, PartialEq)]
/// pub struct OrderUpdatedEvent {
/// pub order_id: u32,
/// pub updated_items: Vec<String>,
/// }
///
/// #[derive(Debug, PartialEq)]
/// pub struct OrderCancelledEvent {
/// pub order_id: u32,
/// }
///
/// #[derive(Debug, Clone, PartialEq)]
/// struct OrderState {
/// order_id: u32,
/// customer_name: String,
/// items: Vec<String>,
/// is_cancelled: bool,
/// }
///
/// let decider: Decider<OrderCommand, OrderState, OrderEvent> = decider();
/// let create_order_command = OrderCommand::Create(CreateOrderCommand {
/// order_id: 1,
/// customer_name: "John Doe".to_string(),
/// items: vec!["Item 1".to_string(), "Item 2".to_string()],
/// });
/// let new_events = decider.compute_new_events(&[], &create_order_command);
/// assert_eq!(new_events, [OrderEvent::Created(OrderCreatedEvent {
/// order_id: 1,
/// customer_name: "John Doe".to_string(),
/// items: vec!["Item 1".to_string(), "Item 2".to_string()],
/// })]);
/// let new_state = decider.compute_new_state(None, &create_order_command);
/// assert_eq!(new_state, OrderState {
/// order_id: 1,
/// customer_name: "John Doe".to_string(),
/// items: vec!["Item 1".to_string(), "Item 2".to_string()],
/// is_cancelled: false,
/// });
///
/// ```
pub struct Decider<'a, C: 'a, S: 'a, E: 'a> {
/// The `decide` function is used to decide which events to produce based on the command and the current state.
pub decide: DecideFunction<'a, C, S, E>,
/// The `evolve` function is used to evolve the state based on the current state and the event.
pub evolve: EvolveFunction<'a, S, E>,
/// The `initial_state` function is used to produce the initial state of the decider.
pub initial_state: InitialStateFunction<'a, S>,
}
impl<'a, C, S, E> Decider<'a, C, S, E> {
/// Maps the Decider over the S/State type parameter.
/// Creates a new instance of [Decider]`<C, S2, E>`.
pub fn map_state<S2, F1, F2>(self, f1: &'a F1, f2: &'a F2) -> Decider<'a, C, S2, E>
where
F1: Fn(&S2) -> S + Send + Sync,
F2: Fn(&S) -> S2 + Send + Sync,
{
let new_decide = Box::new(move |c: &C, s2: &S2| {
let s = f1(s2);
(self.decide)(c, &s)
});
let new_evolve = Box::new(move |s2: &S2, e: &E| {
let s = f1(s2);
f2(&(self.evolve)(&s, e))
});
let new_initial_state = Box::new(move || f2(&(self.initial_state)()));
Decider {
decide: new_decide,
evolve: new_evolve,
initial_state: new_initial_state,
}
}
/// Maps the Decider over the E/Event type parameter.
/// Creates a new instance of [Decider]`<C, S, E2>`.
pub fn map_event<E2, F1, F2>(self, f1: &'a F1, f2: &'a F2) -> Decider<'a, C, S, E2>
where
F1: Fn(&E2) -> E + Send + Sync,
F2: Fn(&E) -> E2 + Send + Sync,
{
let new_decide = Box::new(move |c: &C, s: &S| {
(self.decide)(c, s).into_iter().map(|e: E| f2(&e)).collect()
});
let new_evolve = Box::new(move |s: &S, e2: &E2| {
let e = f1(e2);
(self.evolve)(s, &e)
});
let new_initial_state = Box::new(move || (self.initial_state)());
Decider {
decide: new_decide,
evolve: new_evolve,
initial_state: new_initial_state,
}
}
/// Maps the Decider over the C/Command type parameter.
/// Creates a new instance of [Decider]`<C2, S, E>`.
pub fn map_command<C2, F>(self, f: &'a F) -> Decider<'a, C2, S, E>
where
F: Fn(&C2) -> C + Send + Sync,
{
let new_decide = Box::new(move |c2: &C2, s: &S| {
let c = f(c2);
(self.decide)(&c, s)
});
let new_evolve = Box::new(move |s: &S, e: &E| (self.evolve)(s, e));
let new_initial_state = Box::new(move || (self.initial_state)());
Decider {
decide: new_decide,
evolve: new_evolve,
initial_state: new_initial_state,
}
}
/// Combines two deciders into one bigger decider
/// Creates a new instance of a Decider by combining two deciders of type `C`, `S`, `E` and `C2`, `S2`, `E2` into a new decider of type `Sum<C, C2>`, `(S, S2)`, `Sum<E, E2>`
pub fn combine<C2, S2, E2>(
self,
decider2: Decider<'a, C2, S2, E2>,
) -> Decider<'a, Sum<C, C2>, (S, S2), Sum<E, E2>>
where
S: Clone,
S2: Clone,
{
let new_decide = Box::new(move |c: &Sum<C, C2>, s: &(S, S2)| match c {
Sum::First(c) => {
let s1 = &s.0;
let events = (self.decide)(c, s1);
events
.into_iter()
.map(|e: E| Sum::First(e))
.collect::<Vec<Sum<E, E2>>>()
}
Sum::Second(c) => {
let s2 = &s.1;
let events = (decider2.decide)(c, s2);
events
.into_iter()
.map(|e: E2| Sum::Second(e))
.collect::<Vec<Sum<E, E2>>>()
}
});
let new_evolve = Box::new(move |s: &(S, S2), e: &Sum<E, E2>| match e {
Sum::First(e) => {
let s1 = &s.0;
let new_state = (self.evolve)(s1, e);
(new_state, s.1.to_owned())
}
Sum::Second(e) => {
let s2 = &s.1;
let new_state = (decider2.evolve)(s2, e);
(s.0.to_owned(), new_state)
}
});
let new_initial_state = Box::new(move || {
let s1 = (self.initial_state)();
let s2 = (decider2.initial_state)();
(s1, s2)
});
Decider {
decide: new_decide,
evolve: new_evolve,
initial_state: new_initial_state,
}
}
}
/// Formalizes the `Event Computation` algorithm / event sourced system for the `decider` to handle commands based on the current events, and produce new events.
pub trait EventComputation<C, S, E> {
/// Computes new events based on the current events and the command.
fn compute_new_events(&self, current_events: &[E], command: &C) -> Vec<E>;
}
/// Formalizes the `State Computation` algorithm / state-stored system for the `decider` to handle commands based on the current state, and produce new state.
pub trait StateComputation<C, S, E> {
/// Computes new state based on the current state and the command.
fn compute_new_state(&self, current_state: Option<S>, command: &C) -> S;
}
impl<'a, C, S, E> EventComputation<C, S, E> for Decider<'a, C, S, E> {
/// Computes new events based on the current events and the command.
fn compute_new_events(&self, current_events: &[E], command: &C) -> Vec<E> {
let current_state: S = current_events
.iter()
.fold((self.initial_state)(), |state, event| {
(self.evolve)(&state, event)
});
(self.decide)(command, ¤t_state)
}
}
impl<'a, C, S, E> StateComputation<C, S, E> for Decider<'a, C, S, E> {
/// Computes new state based on the current state and the command.
fn compute_new_state(&self, current_state: Option<S>, command: &C) -> S {
let effective_current_state = current_state.unwrap_or_else(|| (self.initial_state)());
let events = (self.decide)(command, &effective_current_state);
events
.into_iter()
.fold(effective_current_state, |state, event| {
(self.evolve)(&state, &event)
})
}
}