fluvio_socket/
multiplexing.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
use core::task::{Context, Poll};
use std::collections::HashMap;
use std::io::Cursor;
use std::io::Error as IoError;
use std::io::ErrorKind;
use std::marker::PhantomData;
use std::pin::Pin;
use std::sync::Arc;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering::{SeqCst, Relaxed};
use std::sync::atomic::AtomicI32;
use std::time::Duration;
use std::fmt;
use std::future::Future;

use async_channel::bounded;
use async_channel::Receiver;
use async_channel::Sender;
use async_lock::Mutex;
use bytes::Bytes;
use event_listener::Event;
use futures_util::ready;
use futures_util::stream::{Stream, StreamExt};
use pin_project::{pin_project, pinned_drop};
use tokio::select;
use tracing::{info, warn};
use tracing::{debug, error, trace, instrument};

use fluvio_future::net::ConnectionFd;
use fluvio_future::timer::sleep;
use fluvio_protocol::api::Request;
use fluvio_protocol::api::RequestHeader;
use fluvio_protocol::api::RequestMessage;
use fluvio_protocol::Decoder;

use crate::SocketError;
use crate::ExclusiveFlvSink;
use crate::FluvioSocket;
use crate::FluvioStream;

pub type SharedMultiplexerSocket = Arc<MultiplexerSocket>;

#[derive(Clone)]
struct SharedMsg(Arc<Mutex<Option<Bytes>>>, Arc<Event>);

/// Handle different way to multiplex
enum SharedSender {
    /// Serial socket
    Serial(SharedMsg),
    /// Batch Socket
    Queue(Sender<Option<Bytes>>),
}

type Senders = Arc<Mutex<HashMap<i32, SharedSender>>>;

/// Socket that can multiplex connections
pub struct MultiplexerSocket {
    correlation_id_counter: AtomicI32,
    senders: Senders,
    sink: ExclusiveFlvSink,
    stale: Arc<AtomicBool>,
    terminate: Arc<Event>,
}

impl fmt::Debug for MultiplexerSocket {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "MultiplexerSocket {}", self.sink.id())
    }
}

impl Drop for MultiplexerSocket {
    fn drop(&mut self) {
        // notify dispatcher
        self.terminate.notify(usize::MAX);
    }
}

impl MultiplexerSocket {
    pub fn shared(socket: FluvioSocket) -> Arc<Self> {
        Arc::new(Self::new(socket))
    }

    /// create new multiplexer socket, this always starts with correlation id of 1
    /// correlation id of 0 means shared
    #[allow(clippy::clone_on_copy)]
    pub fn new(socket: FluvioSocket) -> Self {
        let id = socket.id().clone();
        debug!(socket = %id, "spawning dispatcher");

        let (sink, stream) = socket.split();
        let stale = Arc::new(AtomicBool::new(false));

        let multiplexer = Self {
            correlation_id_counter: AtomicI32::new(1),
            senders: Arc::new(Mutex::new(HashMap::new())),
            sink: ExclusiveFlvSink::new(sink),
            terminate: Arc::new(Event::new()),
            stale: stale.clone(),
        };

        MultiPlexingResponseDispatcher::run(
            id,
            stream,
            multiplexer.senders.clone(),
            multiplexer.terminate.clone(),
            stale,
        );

        multiplexer
    }

    pub fn set_stale(&self) {
        self.stale.store(true, SeqCst);
    }

    pub fn is_stale(&self) -> bool {
        self.stale.load(SeqCst)
    }

    /// get next available correlation to use
    fn next_correlation_id(&self) -> i32 {
        self.correlation_id_counter.fetch_add(1, Relaxed)
    }

    /// create socket to perform request and response
    #[instrument(skip(req_msg))]
    pub async fn send_and_receive<R>(
        &self,
        mut req_msg: RequestMessage<R>,
    ) -> Result<R::Response, SocketError>
    where
        R: Request,
    {
        use once_cell::sync::Lazy;

        static MAX_WAIT_TIME: Lazy<u64> = Lazy::new(|| {
            use std::env;

            let var_value = env::var("FLV_SOCKET_WAIT").unwrap_or_default();
            let wait_time: u64 = var_value.parse().unwrap_or(60);
            wait_time
        });

        let correlation_id = self.next_correlation_id();
        let bytes_lock = SharedMsg(Arc::new(Mutex::new(None)), Arc::new(Event::new()));

        req_msg.header.set_correlation_id(correlation_id);

        trace!(correlation_id, "senders trying lock");
        let mut senders = self.senders.lock().await;
        senders.insert(correlation_id, SharedSender::Serial(bytes_lock.clone()));
        drop(senders);

        let SharedMsg(msg, msg_event) = bytes_lock;
        // make sure we set up listener, otherwise dispatcher may notify before
        let listener = msg_event.listen();

        debug!(api = R::API_KEY, correlation_id, "sending request");
        self.sink.send_request(&req_msg).await?;
        trace!(correlation_id, "waiting");

        select! {

            _ = sleep(Duration::from_secs(*MAX_WAIT_TIME)) => {

                trace!("serial socket for: {}  timeout happen, id: {}", R::API_KEY, correlation_id);
                // clean channel
                let mut senders = self.senders.lock().await;
                senders.remove(&correlation_id);
                drop(senders);
                self.set_stale();


                Err(IoError::new(
                    ErrorKind::TimedOut,
                    format!("Timed out: {} secs waiting for response. API_KEY={}, CorrelationId={}", *MAX_WAIT_TIME,R::API_KEY, correlation_id),
                ).into())
            },

            _ = listener => {

                // clean channel
                trace!(correlation_id,"msg event");
                let mut senders = self.senders.lock().await;
                senders.remove(&correlation_id);
                drop(senders);

                match msg.try_lock() {
                    Some(guard) => {

                        if let Some(response_bytes) =  &*guard {

                            debug!(correlation_id, len = response_bytes.len(),"receive serial message");
                            let response = R::Response::decode_from(
                                &mut Cursor::new(&response_bytes),
                                req_msg.header.api_version(),
                            )?;
                            trace!("receive serial socket id: {}, response: {:#?}", correlation_id, response);
                            Ok(response)
                        } else {
                            debug!("serial socket: {}, id: {}, value is empty, something bad happened",R::API_KEY,correlation_id);
                            Err(IoError::new(
                                ErrorKind::UnexpectedEof,
                                "connection is closed".to_string(),
                            ).into())
                        }

                    },
                    None => Err(IoError::new(
                        ErrorKind::BrokenPipe,
                        format!("locked failed: {correlation_id}, serial socket is in bad state")
                    ).into())
                }
            },
        }
    }
    /// send request and get response asynchronously
    #[instrument(skip(req_msg))]
    pub async fn send_async<R>(
        &self,
        req_msg: RequestMessage<R>,
    ) -> Result<AsyncResponse<R>, SocketError>
    where
        R: Request,
    {
        self.create_stream(req_msg, 1).await
    }

    /// create stream response
    #[instrument(skip(self,req_msg), fields(api = R::API_KEY))]
    pub async fn create_stream<R>(
        &self,
        mut req_msg: RequestMessage<R>,
        queue_len: usize,
    ) -> Result<AsyncResponse<R>, SocketError>
    where
        R: Request,
    {
        let correlation_id = self.next_correlation_id();

        req_msg.header.set_correlation_id(correlation_id);

        trace!(correlation_id,request = ?req_msg, "new correlation id");

        // set up new channel
        let (sender, receiver) = bounded(queue_len);
        let mut senders = self.senders.lock().await;

        // remove any closed channel, this is not optimal but should do trick for now

        senders.retain(|_, shared_sender| match shared_sender {
            SharedSender::Serial(_) => true,
            SharedSender::Queue(sender) => !sender.is_closed(),
        });

        senders.insert(correlation_id, SharedSender::Queue(sender));
        drop(senders);

        trace!(correlation_id, "created new channel");

        self.sink.send_request(&req_msg).await?;

        trace!(correlation_id, "request send");

        // it is possible that msg have received by dispatcher before channel is inserted into senders
        // but it is easier to clean up

        Ok(AsyncResponse {
            receiver,
            header: req_msg.header,
            correlation_id,
            data: PhantomData,
        })
    }
}

/// Implement async socket where response are send back async manner
/// they are queued using channel
#[pin_project(PinnedDrop)]
pub struct AsyncResponse<R> {
    #[pin]
    receiver: Receiver<Option<Bytes>>,
    header: RequestHeader,
    correlation_id: i32,
    data: PhantomData<R>,
}

#[pinned_drop]
impl<R> PinnedDrop for AsyncResponse<R> {
    fn drop(self: Pin<&mut Self>) {
        self.receiver.close();
        debug!("multiplexer stream: {} closed", self.correlation_id);
    }
}

impl<R: Request> Stream for AsyncResponse<R> {
    type Item = Result<R::Response, SocketError>;

    #[instrument(
        skip(self, cx),
        fields(
            api_key = R::API_KEY,
            correlation_id = self.correlation_id,
        )
    )]
    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let this = self.project();
        let next: Option<Option<_>> = match this.receiver.poll_next(cx) {
            Poll::Pending => {
                trace!("Waiting for async response");
                return Poll::Pending;
            }
            Poll::Ready(next) => next,
        };

        if let Some(bytes) = next {
            if let Some(msg) = bytes {
                use bytes::Buf;
                let response_len = msg.len();
                debug!(
                    response_len,
                    remaining = msg.remaining(),
                    version = this.header.api_version(),
                    "response len>>>"
                );

                let mut cursor = Cursor::new(msg);
                let response = R::Response::decode_from(&mut cursor, this.header.api_version());
                let value = match response {
                    Ok(value) => {
                        trace!("Received response bytes: {},  {:#?}", response_len, &value,);
                        Some(Ok(value))
                    }
                    Err(e) => Some(Err(e.into())),
                };
                Poll::Ready(value)
            } else {
                Poll::Ready(Some(Err(SocketError::SocketClosed)))
            }
        } else {
            Poll::Ready(None)
        }
    }
}

impl<R: Request> Future for AsyncResponse<R> {
    type Output = Result<R::Response, SocketError>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        match ready!(self.poll_next(cx)) {
            Some(next) => Poll::Ready(next),
            None => Poll::Ready(Err(SocketError::SocketClosed)),
        }
    }
}

/// This decodes fluvio protocol based streams and multiplex into different slots
struct MultiPlexingResponseDispatcher {
    id: ConnectionFd,
    senders: Senders,
    terminate: Arc<Event>,
    stale: Arc<AtomicBool>,
}

impl fmt::Debug for MultiPlexingResponseDispatcher {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "MultiplexDisp({})", self.id)
    }
}

impl MultiPlexingResponseDispatcher {
    pub fn run(
        id: ConnectionFd,
        stream: FluvioStream,
        senders: Senders,
        terminate: Arc<Event>,
        stale: Arc<AtomicBool>,
    ) {
        use fluvio_future::task::spawn;

        let dispatcher = Self {
            id,
            senders,
            terminate,
            stale,
        };

        spawn(dispatcher.dispatcher_loop(stream));
    }

    #[instrument(skip(stream))]
    async fn dispatcher_loop(mut self, mut stream: FluvioStream) {
        let frame_stream = stream.get_mut_tcp_stream();

        loop {
            trace!("waiting");

            select! {
                frame = frame_stream.next() => {
                    match frame {
                        Some(Ok(mut msg)) => {
                            let mut correlation_id: i32 = 0;
                            match correlation_id.decode(&mut msg, 0) {
                                Ok(_) => {
                                    use bytes::Buf;
                                    debug!(correlation_id,len = msg.len(), remaining = msg.remaining(), "received frame");

                                    if let Err(err) = self.send(correlation_id, msg.freeze()).await {
                                        error!("error sending to socket, {}", err)
                                    }
                                }
                                Err(err) => error!("error decoding response, {}", err),
                            }
                        },
                        Some(Err(err)) => {
                            warn!("problem getting frame from stream: {err}. terminating");
                            self.close().await;
                            break;
                        },
                        None => {
                            info!("inner stream has terminated ");
                            self.close().await;
                            break;
                        }
                    }
                },

                _ = self.terminate.listen() => {
                    // terminate all channels

                    let guard = self.senders.lock().await;
                    for sender in guard.values() {
                        match sender {
                            SharedSender::Serial(msg) => msg.close().await,
                            SharedSender::Queue(stream_sender) => {
                                stream_sender.close();
                            }
                        }
                    }

                    info!("multiplexer terminated");
                    break;

                }
            }
        }
    }

    /// send message to correct receiver
    #[instrument(skip(self, msg),fields( msg = msg.len()))]
    async fn send(&mut self, correlation_id: i32, msg: Bytes) -> Result<(), SocketError> {
        let mut senders = self.senders.lock().await;
        if let Some(sender) = senders.get_mut(&correlation_id) {
            match sender {
                SharedSender::Serial(serial_sender) => {
                    trace!("found serial");
                    // this should always succeed since nobody should lock
                    match serial_sender.0.try_lock() {
                        Some(mut guard) => {
                            *guard = Some(msg);
                            drop(guard); // unlock
                            serial_sender.1.notify(1);
                            trace!("found serial");
                            Ok(())
                        }
                        None => Err(IoError::new(
                            ErrorKind::BrokenPipe,
                            format!(
                                "failed locking, abandoning sending to socket: {correlation_id}"
                            ),
                        )
                        .into()),
                    }
                }
                SharedSender::Queue(queue_sender) => {
                    trace!("found stream");
                    // sender was dropped before response arrives
                    if queue_sender.is_closed() {
                        debug!(correlation_id, "attempt to send data to closed socket");
                        Ok(())
                    } else {
                        queue_sender.send(Some(msg)).await.map_err(|err| {
                            IoError::new(
                                ErrorKind::BrokenPipe,
                                format!(
                                    "problem sending to queue socket: {correlation_id}, err: {err}"
                                ),
                            )
                            .into()
                        })
                    }
                }
            }
        } else {
            // sender was dropped and unregistered before response arrives
            debug!(
                correlation_id,
                "no socket receiver found, abandoning sending",
            );
            Ok(())
        }
    }

    async fn close(&self) {
        self.stale.store(true, SeqCst);

        let guard = self.senders.lock().await;
        for sender in guard.values() {
            match sender {
                SharedSender::Serial(msg) => msg.close().await,
                SharedSender::Queue(stream_sender) => {
                    let _ = stream_sender.send(None).await;
                }
            }
        }

        info!("multiplexer closed")
    }
}

impl SharedMsg {
    async fn close(&self) {
        let mut guard = self.0.lock().await;
        *guard = None;
        drop(guard);
        self.1.notify(1);
    }
}

#[cfg(test)]
mod tests {

    use std::time::Duration;
    use std::io::ErrorKind;

    use async_trait::async_trait;
    use futures_util::future::{join, join3};
    use futures_util::io::{AsyncRead, AsyncWrite};
    use futures_util::StreamExt;
    use tracing::debug;

    use fluvio_future::net::TcpListener;
    use fluvio_future::net::TcpStream;
    use fluvio_future::task::spawn;
    use fluvio_future::timer::sleep;
    use fluvio_protocol::api::RequestMessage;

    use super::MultiplexerSocket;
    use super::SocketError;
    use crate::test_request::*;
    use crate::ExclusiveFlvSink;
    use crate::FluvioSocket;

    #[allow(unused)]
    const CA_PATH: &str = "certs/certs/ca.crt";
    #[allow(unused)]
    const X509_SERVER: &str = "certs/certs/server.crt";
    #[allow(unused)]
    const X509_SERVER_KEY: &str = "certs/certs/server.key";
    #[allow(unused)]
    const X509_CLIENT: &str = "certs/certs/client.crt";
    #[allow(unused)]
    const X509_CLIENT_KEY: &str = "certs/certs/client.key";

    #[allow(unused)]
    const SLEEP_MS: u64 = 10;

    #[async_trait]
    trait AcceptorHandler {
        type Stream: AsyncRead + AsyncWrite + Unpin + Send;
        async fn accept(&mut self, stream: TcpStream) -> FluvioSocket;
    }

    #[derive(Clone)]
    struct TcpStreamHandler {}

    #[async_trait]
    impl AcceptorHandler for TcpStreamHandler {
        type Stream = TcpStream;

        async fn accept(&mut self, stream: TcpStream) -> FluvioSocket {
            stream.into()
        }
    }

    fn get_error_kind<T: std::fmt::Debug>(
        result: Result<T, SocketError>,
    ) -> Option<std::io::ErrorKind> {
        match result {
            Err(SocketError::Io { source, .. }) => Some(source.kind()),
            _ => None,
        }
    }

    async fn test_server<A: AcceptorHandler + 'static>(
        addr: &str,
        mut handler: A,
        nb_iter: usize,
        timeout: u64,
    ) {
        let listener = TcpListener::bind(addr).await.expect("binding");
        debug!("server is running");
        let mut incoming = listener.incoming();
        let incoming_stream = incoming.next().await;
        debug!("server: got connection");
        let incoming_stream = incoming_stream.expect("next").expect("unwrap again");
        let socket: FluvioSocket = handler.accept(incoming_stream).await;

        let (sink, mut stream) = socket.split();

        let shared_sink = ExclusiveFlvSink::new(sink);

        let mut api_stream = stream.api_stream::<TestApiRequest, TestKafkaApiEnum>();

        for i in 0..nb_iter {
            debug!("server: waiting for next msg: {}", i);
            let msg = api_stream.next().await.expect("msg").expect("unwrap");
            debug!("server: msg received: {:#?}", msg);

            match msg {
                TestApiRequest::EchoRequest(echo_request) => {
                    let mut reply_sink = shared_sink.clone();
                    // depends on different request we delay
                    if echo_request.request().msg == "slow" {
                        debug!("server: received slow msg");
                        spawn(async move {
                            sleep(Duration::from_millis(SLEEP_MS * 50)).await;
                            sleep(Duration::from_secs(timeout)).await; //simulate more waiting time from server while receiving slow msg
                            let resp =
                                echo_request.new_response(EchoResponse::new("slow".to_owned()));
                            debug!("server send slow response");
                            reply_sink
                                .send_response(&resp, 0)
                                .await
                                .expect("send succeed");
                        });
                    } else {
                        debug!("server: received fast msg");
                        spawn(async move {
                            let resp =
                                echo_request.new_response(EchoResponse::new("hello".to_owned()));
                            debug!("server: send fast response");
                            reply_sink
                                .send_response(&resp, 0)
                                .await
                                .expect("send succeed");
                        });
                    }
                }
                TestApiRequest::AsyncStatusRequest(status_request) => {
                    debug!("server: received async status msg");
                    let mut reply_sink = shared_sink.clone();
                    spawn(async move {
                        sleep(Duration::from_millis(SLEEP_MS * 3)).await;
                        let resp = status_request.new_response(AsyncStatusResponse {
                            status: status_request.request.count * 2,
                        });
                        reply_sink
                            .send_response(&resp, 0)
                            .await
                            .expect("send succeed");
                        debug!("server: send back status first");
                        sleep(Duration::from_millis(SLEEP_MS * 10)).await;
                        let resp = status_request.new_response(AsyncStatusResponse {
                            status: status_request.request.count * 4,
                        });
                        reply_sink
                            .send_response(&resp, 0)
                            .await
                            .expect("send succeed");
                        debug!("server: send back status second");
                    });
                }
                _ => panic!("no echo request"),
            }
        }

        debug!("server: finish sending out"); // finish ok
    }

    #[async_trait]
    trait ConnectorHandler {
        type Stream: AsyncRead + AsyncWrite + Unpin + Send + Sync;
        async fn connect(&mut self, stream: TcpStream) -> FluvioSocket;
    }

    #[async_trait]
    impl ConnectorHandler for TcpStreamHandler {
        type Stream = TcpStream;

        async fn connect(&mut self, stream: TcpStream) -> FluvioSocket {
            stream.into()
        }
    }

    async fn test_client<C: ConnectorHandler + 'static>(addr: &str, mut handler: C) {
        use std::time::SystemTime;

        sleep(Duration::from_millis(SLEEP_MS * 2)).await;
        debug!("client: trying to connect");
        let tcp_stream = TcpStream::connect(&addr).await.expect("connection fail");
        let socket = handler.connect(tcp_stream).await;
        debug!("client: connected to test server and waiting...");
        sleep(Duration::from_millis(SLEEP_MS * 2)).await;
        let multiplexer = MultiplexerSocket::shared(socket);

        // create async status
        let async_status_request = RequestMessage::new_request(AsyncStatusRequest { count: 2 });
        let mut status_response = multiplexer
            .create_stream(async_status_request, 10)
            .await
            .expect("response");

        let multiplexor2 = multiplexer.clone();
        let multiplexor3 = multiplexer.clone();

        let (slow, fast, _) = join3(
            async move {
                debug!("trying to send slow");
                // this message was send first but since there is delay of 500ms, it will return slower than fast
                let request = RequestMessage::new_request(EchoRequest::new("slow".to_owned()));
                let response = multiplexer
                    .send_and_receive(request)
                    .await
                    .expect("send success");
                debug!("received slow response");
                assert_eq!(response.msg, "slow");
                SystemTime::now()
            },
            async move {
                // this message will be send later than slow but since there is no delay, it should get earlier than first
                sleep(Duration::from_millis(SLEEP_MS * 2)).await;
                debug!("trying to send fast");
                let request = RequestMessage::new_request(EchoRequest::new("fast".to_owned()));
                let response = multiplexor2
                    .send_and_receive(request)
                    .await
                    .expect("send success");
                debug!("received fast response");
                assert_eq!(response.msg, "hello");
                SystemTime::now()
            },
            async move {
                sleep(Duration::from_millis(SLEEP_MS * 10)).await;
                let response = status_response
                    .next()
                    .await
                    .expect("stream yields value")
                    .expect("async response");
                debug!("received async response");
                assert_eq!(response.status, 4); // multiply by 2
                let response = status_response
                    .next()
                    .await
                    .expect("stream yields value")
                    .expect("async response");
                debug!("received async response");
                assert_eq!(response.status, 8);
                SystemTime::now()
            },
        )
        .await;

        assert!(slow > fast);

        // create async echo response
        let echo_request = RequestMessage::new_request(EchoRequest {
            msg: "fast".to_string(),
        });
        let echo_async_response = multiplexor3
            .send_async(echo_request)
            .await
            .expect("async response future");
        let response = echo_async_response.await.expect("async response");
        assert_eq!(response.msg, "hello");
    }

    async fn test_client_closed_socket<C: ConnectorHandler + 'static>(addr: &str, mut handler: C) {
        use std::time::SystemTime;

        sleep(Duration::from_millis(SLEEP_MS * 2)).await;
        debug!("client: trying to connect");
        let tcp_stream = TcpStream::connect(&addr).await.expect("connection fail");
        let socket = handler.connect(tcp_stream).await;
        debug!("client: connected to test server and waiting...");
        sleep(Duration::from_millis(SLEEP_MS * 2)).await;
        let multiplexer: std::sync::Arc<MultiplexerSocket> = MultiplexerSocket::shared(socket);

        let multiplexor2 = multiplexer.clone();

        let (slow, fast) = join(
            async move {
                debug!("trying to send slow");
                // this message was send first but since there is delay of 500ms, it will return slower than fast
                let request = RequestMessage::new_request(EchoRequest::new("slow".to_owned()));
                let response = multiplexer.send_and_receive(request).await;
                assert!(response.is_err());

                let err_kind = get_error_kind(response).expect("Get right Error Kind");
                let expected = ErrorKind::UnexpectedEof;
                assert_eq!(expected, err_kind);
                debug!("client: socket was closed");

                SystemTime::now()
            },
            async move {
                // this message will be send later than slow but since there is no delay, it should get earlier than first
                sleep(Duration::from_millis(SLEEP_MS * 2)).await;
                debug!("trying to send fast");
                let request = RequestMessage::new_request(EchoRequest::new("fast".to_owned()));
                let response = multiplexor2
                    .send_and_receive(request)
                    .await
                    .expect("send success");
                debug!("received fast response");
                assert_eq!(response.msg, "hello");
                multiplexor2.terminate.notify(usize::MAX); //close multiplexor2
                SystemTime::now()
            },
        )
        .await;
        assert!(slow > fast);
    }

    async fn test_client_time_out<C: ConnectorHandler + 'static>(addr: &str, mut handler: C) {
        sleep(Duration::from_millis(SLEEP_MS * 2)).await;
        debug!("client: trying to connect");
        let tcp_stream = TcpStream::connect(&addr).await.expect("connection fail");
        let socket = handler.connect(tcp_stream).await;
        debug!("client: connected to test server and waiting...");
        sleep(Duration::from_millis(SLEEP_MS * 2)).await;
        let multiplexer: std::sync::Arc<MultiplexerSocket> = MultiplexerSocket::shared(socket);

        let expected: ErrorKind = ErrorKind::TimedOut;

        debug!("trying to send slow");

        let request = RequestMessage::new_request(EchoRequest::new("slow".to_owned()));
        let response = multiplexer.send_and_receive(request).await;
        assert!(response.is_err());

        let err_kind = get_error_kind(response).expect("Get right Error Kind");

        assert_eq!(expected, err_kind);
        debug!("client: socket was timeout");
    }

    #[fluvio_future::test(ignore)]
    async fn test_multiplexing() {
        debug!("start testing");
        let addr = "127.0.0.1:6000";

        let _r = join(
            test_client(addr, TcpStreamHandler {}),
            test_server(addr, TcpStreamHandler {}, 4, 0),
        )
        .await;
    }

    #[fluvio_future::test(ignore)]
    async fn test_multiplexing_close_socket() {
        debug!("start test_multiplexing_close_socket");
        let addr = "127.0.0.1:6000";

        let _r = join(
            test_client_closed_socket(addr, TcpStreamHandler {}),
            test_server(addr, TcpStreamHandler {}, 2, 0),
        )
        .await;
    }

    #[fluvio_future::test(ignore)]
    async fn test_multiplexing_time_out() {
        debug!("start test_multiplexing_timeout");
        let addr = "127.0.0.1:6000";

        let _r = join(
            test_client_time_out(addr, TcpStreamHandler {}),
            test_server(addr, TcpStreamHandler {}, 1, 60), //MAX_WAIT_TIME is 60 second
        )
        .await;
    }
    #[cfg(unix)]
    mod tls_test {
        use std::os::unix::io::AsRawFd;

        use fluvio_future::{
            native_tls::{
                AcceptorBuilder, CertBuilder, ConnectorBuilder, DefaultClientTlsStream,
                DefaultServerTlsStream, IdentityBuilder, PrivateKeyBuilder, TlsAcceptor,
                TlsConnector, X509PemBuilder,
            },
            net::SplitConnection,
        };

        use super::*;

        struct TlsAcceptorHandler(TlsAcceptor);

        impl TlsAcceptorHandler {
            fn new() -> Self {
                let acceptor = AcceptorBuilder::identity(
                    IdentityBuilder::from_x509(
                        X509PemBuilder::from_path(X509_SERVER).expect("read"),
                        PrivateKeyBuilder::from_path(X509_SERVER_KEY).expect("file"),
                    )
                    .expect("identity"),
                )
                .expect("identity:")
                .build()
                .expect("acceptor");
                Self(acceptor)
            }
        }

        #[async_trait]
        impl AcceptorHandler for TlsAcceptorHandler {
            type Stream = DefaultServerTlsStream;

            async fn accept(&mut self, stream: TcpStream) -> FluvioSocket {
                let fd = stream.as_raw_fd();
                let handshake = self.0.accept(stream);
                let tls_stream = handshake.await.expect("hand shake failed");
                let (write, read) = tls_stream.split_connection();
                FluvioSocket::from_stream(write, read, fd)
            }
        }

        struct TlsConnectorHandler(TlsConnector);

        impl TlsConnectorHandler {
            fn new() -> Self {
                let connector = ConnectorBuilder::identity(
                    IdentityBuilder::from_x509(
                        X509PemBuilder::from_path(X509_CLIENT).expect("read"),
                        PrivateKeyBuilder::from_path(X509_CLIENT_KEY).expect("read"),
                    )
                    .expect("509"),
                )
                .expect("connector")
                .danger_accept_invalid_hostnames()
                .no_cert_verification()
                .build();
                Self(connector)
            }
        }

        #[async_trait]
        impl ConnectorHandler for TlsConnectorHandler {
            type Stream = DefaultClientTlsStream;

            async fn connect(&mut self, stream: TcpStream) -> FluvioSocket {
                let fd = stream.as_raw_fd();
                let (write, read) = self
                    .0
                    .connect("localhost", stream)
                    .await
                    .expect("hand shakefailed")
                    .split_connection();

                FluvioSocket::from_stream(write, read, fd)
            }
        }

        #[fluvio_future::test(ignore)]
        async fn test_multiplexing_native_tls() {
            debug!("start testing");
            let addr = "127.0.0.1:6001";

            let _r = join(
                test_client(addr, TlsConnectorHandler::new()),
                test_server(addr, TlsAcceptorHandler::new(), 4, 0),
            )
            .await;
        }
    }
}