1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
//! # The `flp_framework::address` Module
//!
//! This module contains some of the basic primitive address
//! types supported by Floorplan including void addresses,
//! words, bytes, and so on. The implementations in this file
//! look much like what gets generated for Floorplan-defined
//! types, but are manually coded here to provide stronger
//! control over how they get used.
//!
//! For information on acquiring the Floorplan compiler itself,
//! go see the [GitHub project here][github-project].
//!
//! [github-project]: https://github.com/RedlineResearch/floorplan

#![allow(non_snake_case)]
#![allow(dead_code)]
use std::cmp;
use std::fmt;
use std::mem::size_of as size_of;

use super::*;

/// A `VoidAddr`, much like a `void*` in C, is available for those
/// in need of a quick-and-dirty way of representing the value of a
/// pointer without actually being able to read from or write to that
/// pointer.
#[repr(C)]
#[derive(Copy, Clone, Eq, Hash)]
pub struct VoidAddr(usize);

deriveAddrReqs!(VoidAddr);
impl Address for VoidAddr {

    /// Construct a void address:
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let va = VoidAddr::from_usize(0xdeadbeef);
    /// ```
    fn from_usize(val : usize) -> VoidAddr { VoidAddr(val) }

    /// Deconstruct a void address:
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let va = VoidAddr::from_usize(0xdeadbeef);
    /// assert!(va.as_usize() == 3735928559);
    /// ```
    fn as_usize(&self) -> usize { self.0 }

    /// Trivially verify that this void address looks valid.
    /// All values are valid:
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let va = VoidAddr::from_usize(0xdeadbeef);
    /// assert!(va.verify());
    /// ```
    fn verify(self) -> bool { true }

    /// Void addresses cannot be accessed.
    #[inline(always)] fn load<T: Copy> (&self) -> T {
        panic!("Can't load() a VoidAddr!")
    }
    
    /// Void addresses cannot be accessed.
    #[inline(always)] fn store<T> (&self, _value: T) {
        panic!("Can't store() a VoidAddr!")
    }
    
    /// Void addresses cannot be accessed.
    #[inline(always)] fn memset(&self, _char: u8, _length: usize) {
        panic!("Can't memset() a VoidAddr!")
    }
}

impl VoidAddr {

    /// A void address can be constructed from any other address type.
    pub fn from_addr<A: Address>(ptr : A) -> Self {
        VoidAddr(ptr.as_usize())
    }

}

/// A generic address that points to a memory location containing an address.
#[repr(C)]
#[derive(Copy, Clone, Eq, Hash)]
pub struct AddrAddr(usize);
deriveAddr!(AddrAddr, 1 << size_of::<usize>());

/// Determine whether or not the nth-lowest bit of a byte is set.
#[inline(always)]
pub fn test_nth_bit(value: u8, index: usize) -> bool {
    value & (1 << index) != 0
}

/// Mask for just the nth-lowest bits of a byte.
#[inline(always)]
pub fn lower_bits(value: u8, len: usize) -> u8 {
    value & ((1 << len) - 1)
}

/// A `Word` is a value representing data, useful for its ability to
/// be addressed and subsequently accessed by a `WordAddr`. Suppose
/// you have some word address in `wa` and you want to ensure that the lowest
/// bit of that word is set:
///
/// ```rust
/// # #![feature(rustc_private)]
/// # use std::alloc::{alloc, Layout};
/// # use flp_framework::*;
/// # let wa_alloc = unsafe { alloc(Layout::new::<usize>()) };
/// # let wa = WordAddr::from_ptr(wa_alloc);
/// # wa.store(WordAddr::from_usize(0b1));
/// let w : Word = wa.load();
/// assert!(w.is_aligned_to(2) == false);
/// ```
#[repr(C)]
#[derive(Copy, Clone, Eq, Hash)]
pub struct Word(usize);
deriveAddrReqs!(Word);

/// Computes the number of consecutive lower-order bits that are
/// set to zero in a `usize` value.
fn trailing_zeros(x : usize) -> usize {
    if x % 2 != 0 { 0 } else { trailing_zeros(x / 2) }
}

/// The number of bytes in a word of memory.
pub const BYTES_IN_WORD : usize = size_of::<usize>();

/// Log base 2 of the number of bytes in a word of memory.
#[cfg(target_pointer_width = "32")]
pub const LOG_BYTES_IN_WORD : usize = 2;

/// Log base 2 of the number of bytes in a word of memory.
#[cfg(target_pointer_width = "64")]
pub const LOG_BYTES_IN_WORD : usize = 3;

/// Only 32-bit and 64-bit architectures are currently supported by Floorplan.
#[cfg(all(not(target_pointer_width = "64"), not(target_pointer_width = "32")))]
pub const LOG_BYTES_IN_WORD : usize =
    panic!("Unsupported word size.");

/// A `WordAddr` is a value representing the address of a word of memory.
#[repr(C)]
#[derive(Copy, Clone, Eq, Hash)]
pub struct WordAddr(usize);
impl Address for Word {

    /// Constructor for a word value from a raw `usize`.
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let w = Word::from_usize(0xff);
    /// ```
    fn from_usize(val : usize) -> Word { Word(val) }

    /// Deconstructor for a word value into a raw `usize` value.
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let w = Word::from_usize(0xff);
    /// assert!(w.as_usize() == 255);
    /// ```
    fn as_usize(&self) -> usize { self.0 }

    /// All possible word values are valid:
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let w = Word::from_usize(0xff);
    /// assert!(w.verify());
    /// ```
    fn verify(self) -> bool { true }

    /// A word cannot be accessed.
    #[inline(always)] fn load<T: Copy> (&self) -> T {
        panic!("Can't load() a Word!")
    }
    
    /// A word cannot be accessed.
    #[inline(always)] fn store<T> (&self, _value: T) {
        panic!("Can't store() a Word!")
    }

    /// Raw word values are not writeable.
    fn memset(&self, _char: u8, _length: usize) {
        panic!("Can't memset() a Word!")
    }
}

deriveAddrReqs!(WordAddr);
impl Address for WordAddr {

    /// Constructor for a word address from a raw `usize`.
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let wa = WordAddr::from_usize(0xdeadbeef);
    /// ```
    fn from_usize(val : usize) -> WordAddr { WordAddr(val) }

    /// Deconstructor for a word address into a raw `usize` value.
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let wa = WordAddr::from_usize(0xdeadbeef);
    /// assert!(wa.as_usize() == 3735928559);
    /// ```
    fn as_usize(&self) -> usize { self.0 }

    /// All possible word values are valid:
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let wa = WordAddr::from_usize(0xdeadbeef);
    /// assert!(wa.verify());
    /// ```
    fn verify(self) -> bool { true }

    /// A generic address to a raw word cannot be accessed.
    #[inline(always)] fn load<T: Copy> (&self) -> T { unsafe {
        *(self.as_usize() as *mut T)
    }}
    
    /// A generic address to a raw word cannot be accessed.
    #[inline(always)] fn store<T> (&self, value: T) { unsafe {
        *(self.as_usize() as *mut T) = value;
    }}
    
}

/// A `Byte` is a value representing data, useful for its ability to
/// be addressed and subsequently accessed by a `ByteAddr`. Suppose
/// you have some byte address in `ba` and you want to ensure that the lowest
/// bit of that word is not set:
///
/// ```rust
/// # #![feature(rustc_private)]
/// # use std::alloc::{alloc, Layout};
/// # use flp_framework::*;
/// # let ba_alloc = unsafe { alloc(Layout::new::<usize>()) };
/// # let ba = ByteAddr::from_ptr(ba_alloc);
/// # ba.store(ByteAddr::from_usize(0b0));
/// let b : Byte = ba.load();
/// assert!(b.is_aligned_to(2) == true);
/// ```
#[repr(C)]
#[derive(Copy, Clone, Eq, Hash)]
pub struct Byte(u8);
deriveAddrReqs!(Byte);

// TODO: both this impl and the one for `Word` need to be
// changed to represent a `Value` or `Prim` trait to show
// that the associated methods represent operations over primitive
// values and not operations over an address type.
impl Address for Byte {

    /// Constructor for a byte value from a raw `usize`.
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let w = Byte::from_usize(0xff);
    /// ```
    fn from_usize(val : usize) -> Byte { Byte(val as u8) }

    /// Deconstructor for a byte value into a raw `usize` value.
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let w = Byte::from_usize(0xff);
    /// assert!(w.as_usize() == 255);
    /// ```
    fn as_usize(&self) -> usize { self.0 as usize }

    /// All possible byte values are valid:
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let w = Byte::from_usize(0xff);
    /// assert!(w.verify());
    /// ```
    fn verify(self) -> bool { true }

    /// A byte cannot be accessed.
    #[inline(always)] fn load<T: Copy> (&self) -> T {
        panic!("Can't load() a Byte!")
    }
    
    /// A byte cannot be accessed.
    #[inline(always)] fn store<T> (&self, _value: T) {
        panic!("Can't store() a Byte!")
    }

    /// Raw byte values are not writeable.
    fn memset(&self, _char: u8, _length: usize) {
        panic!("Can't memset() a Byte!")
    }
}

/// A `ByteAddr` is a value representing the address of zero or more bytes of memory.
#[repr(C)]
#[derive(Copy, Clone, Eq, Hash)]
pub struct ByteAddr(usize);

deriveAddrReqs!(ByteAddr);
impl Address for ByteAddr {

    /// Constructor for a byte address from a raw `usize`.
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let ba = ByteAddr::from_usize(0xdeadbeef);
    /// ```
    fn from_usize(val : usize) -> ByteAddr { ByteAddr(val) }

    /// Deconstructor for a byte address into a raw `usize` value.
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let ba = ByteAddr::from_usize(0xdeadbeef);
    /// assert!(ba.as_usize() == 3735928559);
    /// ```
    fn as_usize(&self) -> usize { self.0 }

    /// All byte addresses are valid:
    ///
    /// ```rust
    /// # use flp_framework::*;
    /// let ba = ByteAddr::from_usize(0xdeadbeef);
    /// assert!(ba.verify());
    /// ```
    fn verify(self) -> bool { true }

    /// A generic address to a raw byte cannot be accessed.
    #[inline(always)] fn load<T: Copy> (&self) -> T { unsafe {
        *(self.as_usize() as *mut T)
    }}
    
    /// A generic address to a raw byte cannot be accessed.
    #[inline(always)] fn store<T> (&self, value: T) { unsafe {
        *(self.as_usize() as *mut T) = value;
    }}
}

#[cfg(test)]
mod tests {
    use super::*;

    pub const VAL : u8 = 0b000011_11;
    #[test] pub fn v0() { assert_eq!(test_nth_bit(VAL, 0), true); }
    #[test] pub fn v1() { assert_eq!(test_nth_bit(VAL, 1), true); }
    #[test] pub fn v2() { assert_eq!(test_nth_bit(VAL, 2), true); }
    #[test] pub fn v3() { assert_eq!(test_nth_bit(VAL, 3), true); }
    #[test] pub fn v4() { assert_eq!(test_nth_bit(VAL, 4), false); }
    #[test] pub fn v5() { assert_eq!(test_nth_bit(VAL, 5), false); }
    #[test] pub fn v6() { assert_eq!(test_nth_bit(VAL, 6), false); }
    #[test] pub fn v7() { assert_eq!(test_nth_bit(VAL, 7), false); }
}