1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
use melodium_core::*;
use melodium_macro::{check, mel_treatment};
/// Flatten a stream of `Vec<f64>`.
///
/// All the input vectors are turned into continuous stream of scalar values, keeping order.
/// ```mermaid
/// graph LR
/// T("flatten()")
/// B["[🟦 🟦][🟦][🟦 🟦 🟦]"] -->|vector| T
///
/// T -->|value| O["🟦 🟦 🟦 🟦 🟦 🟦"]
///
/// style B fill:#ffff,stroke:#ffff
/// style O fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
input vector Stream<Vec<f64>>
output value Stream<f64>
)]
pub async fn flatten() {
'main: while let Ok(vectors) = vector.recv_vec_f64().await {
for vec in vectors {
check!('main, value.send_f64(vec).await)
}
}
}
/// Chain two streams of `Vec<f64>`.
///
///
/// ```mermaid
/// graph LR
/// T("chain()")
/// A["[🟨 🟨][🟨 🟨 🟨][🟨]"] -->|first| T
/// B["…[🟪][🟪 🟪]"] -->|second| T
///
/// T -->|chained| O["…[🟪][🟪 🟪][🟨 🟨][🟨 🟨 🟨][🟨]"]
///
/// style A fill:#ffff,stroke:#ffff
/// style B fill:#ffff,stroke:#ffff
/// style O fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
input first Stream<Vec<f64>>
input second Stream<Vec<f64>>
output chained Stream<Vec<f64>>
)]
pub async fn chain() {
while let Ok(vectors) = first.recv_vec_f64().await {
check!(chained.send_vec_f64(vectors).await)
}
while let Ok(vectors) = second.recv_vec_f64().await {
check!(chained.send_vec_f64(vectors).await)
}
}
/// Merge two streams of `Vec<f64>`.
///
/// The two streams are merged using the `select` stream:
/// - when `true`, vector from `a` is used;
/// - when `false`, vector from `b` is used.
///
/// ℹ️ No vector from either `a` or `b` are discarded, they are used when `select` give turn.
///
/// ⚠️ When `select` ends merge terminates without treating the remaining vectors from `a` and `b`.
/// When `select` give turn to `a` or `b` while the concerned stream is ended, the merge terminates.
/// Merge continues as long as `select` and concerned stream does, while the other can be ended.
///
/// ```mermaid
/// graph LR
/// T("merge()")
/// A["…[🟪 🟪 🟪][🟪 🟪]…"] -->|a| T
/// B["…[🟨 🟨][🟨][🟨 🟨 🟨]…"] -->|b| T
/// O["… 🟩 🟥 🟥 🟩 🟥 …"] -->|select|T
///
///
/// T -->|value| V["…[🟪 🟪 🟪][🟨 🟨][🟨][🟪 🟪][🟨 🟨 🟨]…"]
///
/// style V fill:#ffff,stroke:#ffff
/// style O fill:#ffff,stroke:#ffff
/// style A fill:#ffff,stroke:#ffff
/// style B fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
input a Stream<Vec<f64>>
input b Stream<Vec<f64>>
input select Stream<bool>
output value Stream<Vec<f64>>
)]
pub async fn merge() {
while let Ok(select) = select.recv_one_bool().await {
let val;
if select {
if let Ok(v) = a.recv_one_vec_f64().await {
val = v;
} else {
break;
}
} else {
if let Ok(v) = b.recv_one_vec_f64().await {
val = v;
} else {
break;
}
}
check!(value.send_one_vec_f64(val).await)
}
}
/// Filter a `Vec<f64>` stream according to `bool` stream.
///
/// ℹ️ If both streams are not the same size nothing is sent through accepted nor rejected.
///
/// ```mermaid
/// graph LR
/// T("filter()")
/// V["…[🟪 🟪 🟪][🟨 🟨][🟨][🟪 🟪][🟨 🟨 🟨]…"] -->|value| T
/// D["… 🟩 🟥 🟥 🟩 🟥 …"] -->|select|T
///
/// T -->|accepted| A["…[🟪 🟪 🟪][🟪 🟪]…"]
/// T -->|rejected| R["…[🟨 🟨][🟨][🟨 🟨 🟨]…"]
///
/// style V fill:#ffff,stroke:#ffff
/// style D fill:#ffff,stroke:#ffff
/// style A fill:#ffff,stroke:#ffff
/// style R fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
input value Stream<Vec<f64>>
input select Stream<bool>
output accepted Stream<Vec<f64>>
output rejected Stream<Vec<f64>>
)]
pub async fn filter() {
let mut accepted_op = true;
let mut rejected_op = true;
while let (Ok(value), Ok(select)) =
futures::join!(value.recv_one_vec_f64(), select.recv_one_bool())
{
if select {
if let Err(_) = accepted.send_one_vec_f64(value).await {
// If we cannot send anymore on accepted, we note it,
// and check if rejected is still valid, else just terminate.
accepted_op = false;
if !rejected_op {
break;
}
}
} else {
if let Err(_) = rejected.send_one_vec_f64(value).await {
// If we cannot send anymore on rejected, we note it,
// and check if accepted is still valid, else just terminate.
rejected_op = false;
if !accepted_op {
break;
}
}
}
}
}
/// Trigger on `Vec<f64>` stream start and end.
///
/// Emit `start` when a first value is send through the stream.
/// Emit `end` when stream is finally over.
///
/// Emit `first` with the first vector coming in the stream.
/// Emit `last` with the last vector coming in the stream.
///
/// ℹ️ `start` and `first` are always emitted together.
/// If the stream only contains one vector, `first` and `last` both contains it.
/// If the stream never transmit any data before being ended, only `end` is emitted.
///
/// ```mermaid
/// graph LR
/// T("trigger()")
/// B["[🟥 🟥] … [🟨 🟨] [🟨 🟨] [🟨 🟨] … [🟩 🟩]"] -->|stream| T
///
/// T -->|start| S["〈🟦〉"]
/// T -->|first| F["〈[🟩 🟩]〉"]
/// T -->|last| L["〈[🟥 🟥]〉"]
/// T -->|end| E["〈🟦〉"]
///
/// style B fill:#ffff,stroke:#ffff
/// style S fill:#ffff,stroke:#ffff
/// style F fill:#ffff,stroke:#ffff
/// style L fill:#ffff,stroke:#ffff
/// style E fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
input stream Stream<Vec<f64>>
output start Block<void>
output end Block<void>
output first Block<Vec<f64>>
output last Block<Vec<f64>>
)]
pub async fn trigger() {
let mut last_value = None;
if let Ok(values) = stream.recv_vec_f64().await {
let _ = start.send_one_void(()).await;
if let Some(val) = values.first().cloned() {
let _ = first.send_one_vec_f64(val).await;
}
last_value = values.last().cloned();
let _ = futures::join!(start.close(), first.close());
}
while let Ok(values) = stream.recv_vec_f64().await {
last_value = values.last().cloned();
}
let _ = end.send_one_void(()).await;
if let Some(val) = last_value {
let _ = last.send_one_vec_f64(val).await;
}
// We don't close `end` and `last` explicitly here,
// because it would be redundant with boilerplate
// implementation of treatments.
}
/// Stream a block `Vec<f64>` element.
///
/// ```mermaid
/// graph LR
/// T("stream()")
/// B["〈[🟦]〉"] -->|block| T
///
/// T -->|stream| S["[🟦]"]
///
///
/// style B fill:#ffff,stroke:#ffff
/// style S fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
input block Block<Vec<f64>>
output stream Stream<Vec<f64>>
)]
pub async fn stream() {
if let Ok(val) = block.recv_one_vec_f64().await {
let _ = stream.send_one_vec_f64(val).await;
}
}
/// Emit a block `Vec<f64>` value.
///
/// When `trigger` is enabled, `value` is emitted as block.
///
/// ```mermaid
/// graph LR
/// T("emit(value=[🟨])")
/// B["〈🟦〉"] -->|trigger| T
///
/// T -->|emit| S["〈[🟨]〉"]
///
/// style B fill:#ffff,stroke:#ffff
/// style S fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
input trigger Block<void>
output emit Block<Vec<f64>>
)]
pub async fn emit(value: Vec<f64>) {
if let Ok(_) = trigger.recv_one_void().await {
let _ = emit.send_one_vec_f64(value).await;
}
}
/// Gives pattern of a `Vec<f64>` stream.
///
/// ```mermaid
/// graph LR
/// T("pattern()")
/// A["…[🟨 🟨][🟨][🟨 🟨 🟨]"] -->|stream| T
///
/// T -->|pattern| O["… [🟦 🟦][🟦][🟦 🟦 🟦]"]
///
/// style A fill:#ffff,stroke:#ffff
/// style O fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
input stream Stream<Vec<f64>>
output pattern Stream<Vec<void>>
)]
pub async fn pattern() {
while let Ok(vectors) = stream.recv_vec_f64().await {
check!(
pattern
.send_vec_void(vectors.into_iter().map(|vec| vec![(); vec.len()]).collect())
.await
)
}
}
/// Fit a stream of `f64` into stream of `Vec<f64>`, using a pattern.
///
/// ℹ️ If some remaining values doesn't fit into the pattern, they are trashed.
/// If there are not enough values to fit the pattern, uncomplete vector is trashed.
///
/// ```mermaid
/// graph LR
/// T("fit()")
/// A["… 🟨 🟨 🟨 🟨 🟨 🟨"] -->|value| T
/// B["[🟦 🟦][🟦][🟦 🟦 🟦]"] -->|pattern| T
///
/// T -->|fitted| O["[🟨 🟨][🟨][🟨 🟨 🟨]"]
///
/// style A fill:#ffff,stroke:#ffff
/// style B fill:#ffff,stroke:#ffff
/// style O fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
input value Stream<f64>
input pattern Stream<Vec<void>>
output fitted Stream<Vec<f64>>
)]
pub async fn fit() {
'main: while let Ok(patterns) = pattern.recv_vec_void().await {
for pattern in patterns {
let mut vector = Vec::with_capacity(pattern.len());
for _ in 0..pattern.len() {
if let Ok(val) = value.recv_one_f64().await {
vector.push(val);
} else {
// Uncomplete, we 'trash' vector
break 'main;
}
}
check!('main, fitted.send_one_vec_f64(vector).await)
}
}
}
/// Fill a pattern stream with a `f64` value.
///
/// ```mermaid
/// graph LR
/// T("fill(value=🟧)")
/// B["…[🟦 🟦][🟦][🟦 🟦 🟦]…"] -->|pattern| T
///
/// T -->|filled| O["…[🟧 🟧][🟧][🟧 🟧 🟧]…"]
///
/// style B fill:#ffff,stroke:#ffff
/// style O fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
default value 0
input pattern Stream<Vec<void>>
output filled Stream<Vec<f64>>
)]
pub async fn fill(value: f64) {
while let Ok(pat) = pattern.recv_vec_void().await {
check!(
filled
.send_vec_f64(
pat.into_iter()
.map(|p| vec![value.clone(); p.len()])
.collect()
)
.await
)
}
}
/// Resize vectors according to given streamed size.
///
/// If a vector is smaller than expected size, it is extended using the `default` value.
///
/// ```mermaid
/// graph LR
/// T("resize(default=🟨)")
/// V["[🟦 🟦][🟦][][🟦 🟦 🟦]…"] -->|vector| T
/// S["3️⃣ 2️⃣ 3️⃣ 2️⃣ …"] -->|size| T
///
/// T -->|resized| P["[🟦 🟦 🟨][🟦 🟨][🟨 🟨 🟨][🟦 🟦]…"]
///
/// style V fill:#ffff,stroke:#ffff
/// style S fill:#ffff,stroke:#ffff
/// style P fill:#ffff,stroke:#ffff
/// ```
#[mel_treatment(
default default 0
input vector Stream<Vec<f64>>
input size Stream<u64>
output resized Stream<Vec<f64>>
)]
pub async fn resize(default: f64) {
while let Ok(size) = size.recv_one_u64().await {
if let Ok(mut vec) = vector.recv_one_vec_f64().await {
vec.resize(size as usize, default.clone());
check!(resized.send_one_vec_f64(vec).await);
} else {
break;
}
}
}