1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use num_traits;
use std::f64;
use std::f32;

/// Get the next valid float in the direction of y
///
/// Base assumptions:
/// self == y -> return y
/// self >= infinity -> return infinity
/// self <= negative infinity -> return negative infinity
///
pub trait NextAfter<T: num_traits::Float> {
    fn next_after(&self, y: &T) -> T;
}

impl<T: num_traits::Float> NextAfter<T> for T {
    fn next_after(&self, y: &T) -> T {
        next_afterf(self, y)
    }
}

/// Return the next valid float from x in the direction of y
///
fn next_afterf<T: num_traits::Float>(x: &T, y: &T) -> T
{
    // If x and y are equal, there is nothing further to do
    if *y == *x {
        return *y;
    }

    // If x is somehow beyond infinity, return infinity
    if *x >= T::infinity() {
        return T::infinity();
    }

    // If x is somehow beyond negative infinity, return negative infinity
    if *x <= T::neg_infinity() {
        return T::neg_infinity();
    }

    // If x is a small number between -1 and 1, we use an algorithm for small numbers
    if T::from(-1.0).unwrap() <= *x && *x <= T::from(1.0).unwrap() {
        return if *y > *x {
            *x + T::epsilon()
        } else {
            *x - T::epsilon()
        }
    }

    // x is larger than 1 or smaller than -1, so decode it into mantissa, exponent, and sign
    let (m, e, s) = x.integer_decode();

    return if *y > *x { // Make x larger
        let adj_m = m + 1;
        T::from(s).unwrap() * T::from(adj_m).unwrap() * T::from(2f64).unwrap().powf(T::from(e).unwrap())
    } else { //Make x smaller
        let adj_m = m - 1;
        T::from(s).unwrap() * T::from(adj_m).unwrap() * T::from(2f64).unwrap().powf(T::from(e).unwrap())
    }
}

/// Decodes a float into a tuple with (mantissa: u64, exponent: i16, and sign: i8)
///
pub trait FloatDecode {
    fn float_decode(&self) -> (u64, i16, i8);
}

impl FloatDecode for f64 {
    // See https://github.com/rust-lang/rust/blob/master/src/libcore/num/dec2flt/rawfp.rs
    fn float_decode(&self) -> (u64, i16, i8) {
        let bits = self.to_bits();
        let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
        let mut exponent: i16 = ((bits >> (f64::MANTISSA_DIGITS - 1) as u64) & 0x7ff) as i16;
        let mantissa = if exponent == 0 {
            (bits & 0xfffffffffffff) << 1
        } else {
            (bits & 0xfffffffffffff) | 0x10000000000000
        };
        exponent -= 1023 + (f64::MANTISSA_DIGITS as i16 - 1);
        (mantissa, exponent, sign)
    }
}

impl FloatDecode for f32 {
    // See https://github.com/rust-lang/rust/blob/master/src/libcore/num/dec2flt/rawfp.rs
    fn float_decode(&self) -> (u64, i16, i8) {
        let bits = self.to_bits();
        let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
        let mut exponent: i16 = ((bits >> (f32::MANTISSA_DIGITS - 1) as u32) & 0xff) as i16;
        let mantissa =
        if exponent == 0 { (bits & 0x7fffff) << 1 } else { (bits & 0x7fffff) | 0x800000 };
        exponent -= 127 + (f32::MANTISSA_DIGITS as i16 - 1);
        (mantissa as u64, exponent, sign)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn next_larger_than_0() {
        let zero = 0_f64;
        let next = zero.next_after(&std::f64::INFINITY);
        assert_eq!(next, 0.0000000000000002220446049250313_f64);
    }

    #[test]
    fn next_smaller_than_0() {
        let zero = 0_f64;
        let next = zero.next_after(&std::f64::NEG_INFINITY);
        assert_eq!(next, -0.0000000000000002220446049250313);
    }

    #[test]
    fn next_larger_than_a_big_number() {
        let big_num = 16237485966.00000437586943_f64;
        let next = big_num.next_after(&std::f64::INFINITY);
        assert_eq!(next, 16237485966.000006_f64);
    }

    #[test]
    fn next_smaller_than_a_small_number() {
        let small_num = -16237485966.00000437586943_f64;
        let next = small_num.next_after(&std::f64::NEG_INFINITY);
        assert_eq!(next, -16237485966.000002_f64);
    }

    #[test]
    fn next_larger_than_1() {
        let one = 1_f64;
        let next = one.next_after(&std::f64::INFINITY);
        assert_eq!(next, 1_f64 + std::f64::EPSILON);
    }

    #[test]
    fn next_smaller_than_1() {
        let neg_one = -1_f64;
        let next = neg_one.next_after(&std::f64::NEG_INFINITY);
        assert_eq!(next, -1_f64 - std::f64::EPSILON);
    }

    #[test]
    fn next_larger_than_0_f32() {
        let zero = 0_f32;
        let next = zero.next_after(&std::f32::INFINITY);
        assert_eq!(next, 0.00000011920929_f32);
    }

    #[test]
    fn next_smaller_than_0_f32() {
        let zero = 0_f32;
        let next = zero.next_after(&std::f32::NEG_INFINITY);
        assert_eq!(next, -0.00000011920929_f32);
    }

    #[test]
    fn next_larger_than_a_big_number_f32() {
        let big_num = 16237485966.00000437586943_f32;
        let next = big_num.next_after(&std::f32::INFINITY);
        assert_eq!(next, 16237487000_f32);
    }

    #[test]
    fn next_smaller_than_a_small_number_f32() {
        let small_num = -16237485966.00000437586943_f32;
        let next = small_num.next_after(&std::f32::NEG_INFINITY);
        assert_eq!(next, -16237485000_f32);
    }

    #[test]
    fn next_larger_than_1_f32() {
        let one = 1_f32;
        let next = one.next_after(&std::f32::INFINITY);
        assert_eq!(next, 1_f32 + std::f32::EPSILON);
    }

    #[test]
    fn next_smaller_than_1_f32() {
        let neg_one = -1_f32;
        let next = neg_one.next_after(&std::f32::NEG_INFINITY);
        assert_eq!(next, -1_f32 - std::f32::EPSILON);
    }

}