1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// Copyright 2014-2018 Optimal Computing (NZ) Ltd.
// Licensed under the MIT license.  See LICENSE for details.

use std::mem;
use num_traits::NumCast;

/// A trait for floating point numbers which computes the number of representable
/// values or ULPs (Units of Least Precision) that separate the two given values.
pub trait Ulps {
    type U: Copy + NumCast;

    /// The number of representable values or ULPs (Units of Least Precision) that
    /// separate `self` and `other`.  The result `U` is an integral value, and will
    /// be zero if `self` and `other` are exactly equal.
    fn ulps(&self, other: &Self) -> <Self as Ulps>::U;
}

impl Ulps for f32 {
    type U = i32;

    fn ulps(&self, other: &f32) -> i32 {

        // IEEE754 defined floating point storage representation to
        // maintain their order when their bit patterns are interpreted as
        // integers.  This is a huge boon to the task at hand, as we can
        // (unsafely) cast to integers to find out how many ULPs apart any
        // two floats are

        // Setup integer representations of the input
        let ai32: i32 = unsafe { mem::transmute::<f32,i32>(*self) };
        let bi32: i32 = unsafe { mem::transmute::<f32,i32>(*other) };

        ai32.wrapping_sub(bi32)
    }
}

#[test]
fn f32_ulps_test1() {
    let x: f32 = 1000000_f32;
    let y: f32 = 1000000.1_f32;
    println!("DIST IS {}",x.ulps(&y));
    assert!(x.ulps(&y) == -2);
}

#[test]
fn f32_ulps_test2() {
    let pzero: f32 = unsafe { mem::transmute(0x00000000_u32) };
    let nzero: f32 = unsafe { mem::transmute(0x80000000_u32) };
    println!("DIST IS {}",pzero.ulps(&nzero));
    assert!(pzero.ulps(&nzero) == -2147483648);
}
#[test]
fn f32_ulps_test3() {
    let pinf: f32 = unsafe { mem::transmute(0x7f800000_u32) };
    let ninf: f32 = unsafe { mem::transmute(0xff800000_u32) };
    println!("DIST IS {}",pinf.ulps(&ninf));
    assert!(pinf.ulps(&ninf) == -2147483648);
}

#[test]
fn f32_ulps_test4() {
    let x: f32 = unsafe { mem::transmute(0x63a7f026_u32) };
    let y: f32 = unsafe { mem::transmute(0x63a7f023_u32) };
    println!("DIST IS {}",x.ulps(&y));
    assert!(x.ulps(&y) == 3);
}

#[test]
fn f32_ulps_test5() {
    let x: f32 = 2.0;
    let ulps: i32 = unsafe { mem::transmute(x) };
    let x2: f32 = unsafe { mem::transmute(ulps) };
    assert_eq!(x, x2);
}

impl Ulps for f64 {
    type U = i64;

    fn ulps(&self, other: &f64) -> i64 {

        // IEEE754 defined floating point storage representation to
        // maintain their order when their bit patterns are interpreted as
        // integers.  This is a huge boon to the task at hand, as we can
        // (unsafely) cast to integers to find out how many ULPs apart any
        // two floats are

        // Setup integer representations of the input
        let ai64: i64 = unsafe { mem::transmute::<f64,i64>(*self) };
        let bi64: i64 = unsafe { mem::transmute::<f64,i64>(*other) };

        ai64.wrapping_sub(bi64)
    }
}

#[test]
fn f64_ulps_test1() {
    let x: f64 = 1000000_f64;
    let y: f64 = 1000000.00000001_f64;
    println!("DIST IS {}",x.ulps(&y));
    assert!(x.ulps(&y) == -86);
}

#[test]
fn f64_ulps_test2() {
    let pzero: f64 = unsafe { mem::transmute(0x0000000000000000_u64) };
    let nzero: f64 = unsafe { mem::transmute(0x8000000000000000_u64) };
    println!("DIST IS {}",pzero.ulps(&nzero));
    assert!(pzero.ulps(&nzero) == -9223372036854775808i64);
}
#[test]
fn f64_ulps_test3() {
    let pinf: f64 = unsafe { mem::transmute(0x7f80000000000000_u64) };
    let ninf: f64 = unsafe { mem::transmute(0xff80000000000000_u64) };
    println!("DIST IS {}",pinf.ulps(&ninf));
    assert!(pinf.ulps(&ninf) == -9223372036854775808i64);
}

#[test]
fn f64_ulps_test4() {
    let x: f64 = unsafe { mem::transmute(0xd017f6cc63a7f026_u64) };
    let y: f64 = unsafe { mem::transmute(0xd017f6cc63a7f023_u64) };
    println!("DIST IS {}",x.ulps(&y));
    assert!(x.ulps(&y) == 3);
}

#[test]
fn f64_ulps_test5() {
    let x: f64 = 2.0;
    let ulps: i64 = unsafe { mem::transmute(x) };
    let x2: f64 = unsafe { mem::transmute(ulps) };
    assert_eq!(x, x2);
}