flex_alloc/alloc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
//! Support for memory allocation.
use core::alloc::Layout;
#[cfg(not(feature = "allocator-api2"))]
use core::fmt;
use core::marker::PhantomData;
use core::ptr::{self, NonNull};
#[cfg(feature = "zeroize")]
use core::slice;
#[cfg(all(feature = "alloc", not(feature = "allocator-api2")))]
use core::mem::transmute;
#[cfg(all(feature = "alloc", not(feature = "allocator-api2")))]
use alloc_crate::alloc::{alloc as raw_alloc, dealloc as raw_dealloc};
#[cfg(all(feature = "alloc", feature = "allocator-api2"))]
pub use allocator_api2::alloc::Global;
#[cfg(feature = "allocator-api2")]
pub use allocator_api2::alloc::{AllocError, Allocator};
#[cfg(feature = "zeroize")]
use zeroize::Zeroize;
#[cfg(all(not(test), feature = "alloc"))]
pub use alloc_crate::alloc::handle_alloc_error;
#[cfg(any(test, not(feature = "alloc")))]
/// Custom allocation error handler.
pub fn handle_alloc_error(layout: Layout) -> ! {
panic!("memory allocation of {} bytes failed", layout.size());
}
/// The AllocError error indicates an allocation failure that may be due to
/// resource exhaustion or to something wrong when combining the given input
/// arguments with this allocator.
#[cfg(not(feature = "allocator-api2"))]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct AllocError;
#[cfg(not(feature = "allocator-api2"))]
impl fmt::Display for AllocError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("memory allocation failed")
}
}
#[cfg(all(feature = "std", not(feature = "allocator-api2")))]
impl std::error::Error for AllocError {}
/// An implementation of Allocator can allocate, grow, shrink, and deallocate
/// arbitrary blocks of data described via `Layout`.
///
/// Allocator is designed to be implemented on ZSTs, references, or smart
/// pointers because having an allocator like `MyAlloc([u8; N])` cannot be
/// moved, without updating the pointers to the allocated memory.
///
/// Unlike `GlobalAlloc`, zero-sized allocations are allowed in `Allocator`.
/// If an underlying allocator does not support this (like `jemalloc`) or
/// return a null pointer (such as `libc::malloc`), this must be caught by
/// the implementation.
///
/// # Currently allocated memory
/// Some of the methods require that a memory block be currently allocated via
/// an allocator. This means that:
/// - The starting address for that memory block was previously returned by
/// `allocate`, `grow`, or `shrink`, and
/// - The memory block has not been subsequently deallocated, where blocks are
/// either deallocated directly by being passed to deallocate or were change
/// by being passed to `grow` or `shrink` that returns `Ok`. If `grow` or
/// `shrink` have returned `Err`, the passed pointer remains valid.
///
/// # Memory fitting
/// Some of the methods require that a layout fit a memory block. What it means
/// for a layout to "fit" a memory block means (or equivalently, for a memory
/// block to "fit" a layout) is that the following conditions must hold:
/// - The block must be allocated with the same alignment as `layout.align()`, and
/// - The provided `layout.size()` must fall in the range `min..=max`, where:
/// - `min` is the size of the layout most recently used to allocate the block, and
/// - `max` is the latest actual size returned from `allocate`, `grow`, or `shrink`.
///
/// #Safety
/// - Memory blocks returned from an allocator must point to valid memory and retain
/// their validity until the instance and all of its clones are dropped,
/// - Cloning or moving the allocator must not invalidate memory blocks returned from
/// this allocator. A cloned allocator must behave like the same allocator, and
/// - Any pointer to a memory block which is currently allocated may be passed to any
/// other method of the allocator.
#[cfg(not(feature = "allocator-api2"))]
pub unsafe trait Allocator {
/// Try to allocate a slice of memory within this allocator instance,
/// returning the new allocation.
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>;
/// Release an allocation produced by this allocator.
///
/// # Safety
/// The value `ptr` must represent an allocation produced by this allocator, otherwise
/// a memory access error may occur. The value `old_layout` must correspond to the
/// layout produced by the previous allocation.
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout);
/// Try to allocate a slice of memory within this allocator instance,
/// returning the new allocation. The memory will be initialized with zeroes.
#[inline]
fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
let ptr = self.allocate(layout)?;
// SAFETY: the result of `allocate` must be properly aligned
unsafe { ptr::write_bytes(ptr.cast::<u8>().as_ptr(), 0, ptr.len()) };
Ok(ptr)
}
/// Try to extend the size of an allocation to accomodate a new, larger layout.
unsafe fn grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
debug_assert!(
new_layout.size() >= old_layout.size(),
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
);
// This default implementation simply allocates and copies over the contents.
// NB: not copying the entire previous buffer seems to defeat some automatic
// optimization and results in much worse performance (on MacOS 14 at least).
let new_ptr = self.allocate(new_layout)?;
let cp_len = old_layout.size().min(new_ptr.len());
if cp_len > 0 {
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), cp_len);
}
self.deallocate(ptr, old_layout);
Ok(new_ptr)
}
/// Try to extend the size of an allocation to accomodate a new, larger layout.
/// Fill the extra capacity with zeros.
unsafe fn grow_zeroed(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
debug_assert!(
new_layout.size() >= old_layout.size(),
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
);
// This default implementation simply allocates and copies over the contents.
// NB: not copying the entire previous buffer seems to defeat some automatic
// optimization and results in much worse performance (on MacOS 14 at least).
let new_ptr = self.allocate_zeroed(new_layout)?;
let cp_len = old_layout.size().min(new_ptr.len());
if cp_len > 0 {
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), cp_len);
}
self.deallocate(ptr, old_layout);
Ok(new_ptr)
}
/// Try to reduce the size of an allocation to accomodate a new, smaller layout.
unsafe fn shrink(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
debug_assert!(
new_layout.size() <= old_layout.size(),
"`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
);
// This default implementation simply allocates and copies over the contents.
// NB: not copying the entire previous buffer seems to defeat some automatic
// optimization and results in much worse performance (on MacOS 14 at least).
let new_ptr = self.allocate(new_layout)?;
let cp_len = old_layout.size().min(new_ptr.len());
if cp_len > 0 {
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), cp_len);
}
self.deallocate(ptr, old_layout);
Ok(new_ptr)
}
/// Obtain a reference to this allocator type.
#[inline(always)]
fn by_ref(&self) -> &Self
where
Self: Sized,
{
self
}
}
/// For all types which are an allocator or reference an allocator, enable their
/// usage as a target for allocation.
pub trait AllocateIn: Sized {
/// The type of the allocator instance
type Alloc: Allocator;
/// Try to allocate a slice of a memory corresponding to `layout`, returning
/// the new allocation and the allocator instance
fn allocate_in(self, layout: Layout) -> Result<(NonNull<[u8]>, Self::Alloc), AllocError>;
/// Try to allocate a slice of a memory corresponding to `layout`, returning
/// the new allocation and the allocator instance. The memory will be initialized
/// with zeroes.
#[inline]
fn allocate_zeroed_in(
self,
layout: Layout,
) -> Result<(NonNull<[u8]>, Self::Alloc), AllocError> {
let (ptr, alloc) = self.allocate_in(layout)?;
// SAFETY: the result of `allocate` must be properly aligned
unsafe { ptr::write_bytes(ptr.cast::<u8>().as_ptr(), 0, ptr.len()) };
Ok((ptr, alloc))
}
}
impl<A: Allocator> AllocateIn for A {
type Alloc = A;
#[inline]
fn allocate_in(self, layout: Layout) -> Result<(NonNull<[u8]>, Self::Alloc), AllocError> {
let data = self.allocate(layout)?;
Ok((data, self))
}
#[inline]
fn allocate_zeroed_in(
self,
layout: Layout,
) -> Result<(NonNull<[u8]>, Self::Alloc), AllocError> {
let data = self.allocate_zeroed(layout)?;
Ok((data, self))
}
}
/// A trait implemented by allocators supporting a constant initializer.
/// This cannot use ConstDefault as it is not implemented for the external
/// `Global` allocator.
pub trait AllocatorDefault: Allocator + Clone + Default {
/// The constant initializer for this allocator.
const DEFAULT: Self;
}
/// A marker trait for allocators which zeroize on deallocation.
pub trait AllocatorZeroizes: Allocator {}
/// Attach an allocator to a fixed allocation buffer. Once the initial
/// buffer is exhausted, additional buffer(s) may be requested from the
/// new allocator instance.
pub trait SpillAlloc<'a>: Sized {
/// The concrete type of resulting allocation target.
type NewIn<A: 'a>;
/// Consume the allocator instance, returning a new allocator
/// which spills into the Global allocator.
#[inline]
fn spill_alloc(self) -> Self::NewIn<Global> {
Self::spill_alloc_in(self, Global)
}
/// Consume the allocator instance, returning a new allocator
/// which spills into the provided allocator instance `alloc`.
fn spill_alloc_in<A: Allocator + 'a>(self, alloc: A) -> Self::NewIn<A>;
}
/// The global memory allocator.
///
/// When the `alloc` feature is enabled, this type implements the `Allocator`
/// trait by forwarding calls to the allocator registered with the
/// `#[global_allocator]` attribute if there is one, or the `std` crate's default.
#[cfg(any(not(feature = "alloc"), not(feature = "allocator-api2")))]
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "alloc", derive(Default, Copy))]
pub struct Global;
#[cfg(all(feature = "alloc", not(feature = "allocator-api2")))]
unsafe impl Allocator for Global {
#[inline]
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
let ptr = if layout.size() == 0 {
// FIXME: use Layout::dangling when stabilized
// SAFETY: layout alignments are guaranteed to be non-zero.
#[allow(clippy::useless_transmute)]
unsafe {
NonNull::new_unchecked(transmute(layout.align()))
}
} else {
let Some(ptr) = NonNull::new(unsafe { raw_alloc(layout) }) else {
return Err(AllocError);
};
ptr
};
Ok(NonNull::slice_from_raw_parts(ptr, layout.size()))
}
#[inline]
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
if layout.size() > 0 {
raw_dealloc(ptr.as_ptr(), layout);
}
}
}
#[cfg(not(feature = "alloc"))]
// Stub implementation to allow Global as the default allocator type
// even when the `alloc` feature is not enabled. Any usage as an allocator
// will result in a panic.
unsafe impl Allocator for Global {
fn allocate(&self, _layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
unimplemented!();
}
unsafe fn deallocate(&self, _ptr: NonNull<u8>, _layout: Layout) {
unimplemented!();
}
}
#[cfg(feature = "alloc")]
impl AllocatorDefault for Global {
const DEFAULT: Self = Global;
}
/// An allocator backed by a fixed storage buffer.
#[derive(Debug, Default, PartialEq, Eq)]
pub struct Fixed<'a>(PhantomData<&'a mut ()>);
unsafe impl Allocator for Fixed<'_> {
#[inline(always)]
fn allocate(&self, _layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
Err(AllocError)
}
#[inline(always)]
unsafe fn grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
if old_layout.align() != new_layout.align() || new_layout.size() > old_layout.size() {
Err(AllocError)
} else {
Ok(NonNull::slice_from_raw_parts(ptr, old_layout.size()))
}
}
#[inline(always)]
unsafe fn shrink(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
if old_layout.align() != new_layout.align() || new_layout.size() > old_layout.size() {
Err(AllocError)
} else {
Ok(NonNull::slice_from_raw_parts(ptr, old_layout.size()))
}
}
#[inline]
unsafe fn deallocate(&self, _ptr: NonNull<u8>, _layout: Layout) {}
}
impl<'a> AllocatorDefault for Fixed<'a> {
const DEFAULT: Self = Self(PhantomData);
}
impl Clone for Fixed<'_> {
fn clone(&self) -> Self {
Fixed::DEFAULT
}
}
/// An allocator which may represent either a fixed allocation or a dynamic
/// allocation with an allocator instance `A`.
#[derive(Debug)]
pub struct Spill<'a, A> {
alloc: A,
initial: *const u8,
_fixed: Fixed<'a>,
}
impl<'a, A> Spill<'a, A> {
pub(crate) const fn new(alloc: A, initial: *const u8, fixed: Fixed<'a>) -> Self {
Self {
alloc,
initial,
_fixed: fixed,
}
}
}
impl<A: Default + Allocator> Default for Spill<'_, A> {
#[inline]
fn default() -> Self {
Self::new(A::default(), ptr::null(), Fixed::DEFAULT)
}
}
unsafe impl<A: Allocator> Allocator for Spill<'_, A> {
#[inline]
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
self.alloc.allocate(layout)
}
#[inline]
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
if !ptr::eq(self.initial, ptr.as_ptr()) {
self.alloc.deallocate(ptr, layout)
}
}
}
impl<'a, A: Default + Allocator> Clone for Spill<'a, A> {
fn clone(&self) -> Self {
Self::default()
}
}
impl<'a, A: AllocatorDefault> AllocatorDefault for Spill<'a, A> {
const DEFAULT: Self = Self::new(A::DEFAULT, ptr::null(), Fixed::DEFAULT);
}
#[cfg(feature = "zeroize")]
/// An allocator which allocates via `A` and zeroizes all buffers when they are released.
#[derive(Debug, Default, Clone, Copy)]
pub struct ZeroizingAlloc<A>(pub A);
#[cfg(feature = "zeroize")]
unsafe impl<A: Allocator> Allocator for ZeroizingAlloc<A> {
#[inline]
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
self.0.allocate(layout)
}
// The default implementation of `try_resize`` will always allocate a new buffer
// and release the old one, allowing it to be zeroized below.
#[inline]
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
if layout.size() > 0 {
let mem = slice::from_raw_parts_mut(ptr.as_ptr(), layout.size());
mem.zeroize();
}
self.0.deallocate(ptr, layout)
}
}
#[cfg(feature = "zeroize")]
impl<A: AllocatorDefault> AllocatorDefault for ZeroizingAlloc<A> {
const DEFAULT: Self = ZeroizingAlloc(A::DEFAULT);
}
#[cfg(feature = "zeroize")]
impl<'a, Z> SpillAlloc<'a> for &'a mut zeroize::Zeroizing<Z>
where
Z: Zeroize + 'a,
&'a mut Z: SpillAlloc<'a>,
{
type NewIn<A: 'a> = <&'a mut Z as SpillAlloc<'a>>::NewIn<ZeroizingAlloc<A>>;
#[inline]
fn spill_alloc_in<A: Allocator + 'a>(self, alloc: A) -> Self::NewIn<A> {
(&mut **self).spill_alloc_in(ZeroizingAlloc(alloc))
}
}
#[cfg(feature = "zeroize")]
impl<A: Allocator> AllocatorZeroizes for ZeroizingAlloc<A> {}
/// Convert between types in this crate and standard containers.
pub trait ConvertAlloc<Target> {
/// Convert directly into the target type, ideally without reallocating.
fn convert(self) -> Target;
}