1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
use crate::{
error::ResourceStorageError,
multiarrayview::MultiArrayView,
storage::ResourceHandle,
structs::{IndexStruct, VariadicRefFactory, VariadicStruct},
vector::ExternalVector,
};
use std::{borrow::BorrowMut, fmt, io, marker};
/// A container for writing an indexed sequence of heterogeneous data items.
///
/// The concept of a multivector is used for storing and reading heterogeneous
/// flatdata structs in/from the same container. The data is indexed by
/// integers. Each index refers to a bucket which may contain a variable number
/// of items of different types unified in the same variant enum `Ts`.
/// Such bucket may also be empty, which allows to represent sparse data in a
/// multivector. For those who are familiar with C++'s `std::multimap` data
/// structure, a multivector can be considered as a `std::multimap` mapping
/// integers to sequences of variable length.
///
/// A `MultiVector` corresponds rather to [`ExternalVector`] than to
/// [`Vector`], in the sense that the items are flushed to storage whenever the
/// internal buffer is full. In particular, it is only possible to modify the
/// last bucket. There is no access to the buckets previously stored.
///
/// For accessing and reading the data stored by in multivector, cf.
/// [`MultiArrayView`].
///
/// A multivector *must* be closed, after the last element was written to it.
/// After closing, it can not be used anymore.
///
/// Internally data is stored like this:
///
/// * `Index`: `Vector<Idx>` - encodes start/end byte in `Data` array for each
/// element `i`. * `Data`: `Vec<u8>` - sequence of serialized (`Tag`,
/// `ItemData`) tuples, where `Tag` encodes the the variant type, and
/// `ItemData` contains the underlying variant data. `Tag` has size of 1 byte,
/// `ItemData` is of size `Ts::Type::SIZE_IN_BYTES`.
///
/// # Examples
/// ```flatdata
/// struct A {
/// x : u32 : 16;
/// y : u32 : 16;
/// }
///
/// struct B {
/// id : u32 : 16;
/// }
///
/// archive Z {
/// ab : multivector<16, A, B>;
/// }
/// ```
///
/// ```rust
/// use flatdata::MemoryResourceStorage;
/// use flatdata::test::{A, B, AbRef, Z, ZBuilder};
///
/// // create multivector and serialize some data
/// let mut storage = MemoryResourceStorage::new("/root/multivec");
/// let mut builder = ZBuilder::new(storage.clone()).expect("Fail to create builder");
/// let mut mv = builder.start_ab().expect("failed to create MultiVector");
/// let mut item = mv.grow().expect("grow failed");
/// let mut a = item.add_a();
/// a.set_x(1);
/// a.set_y(2);
///
/// let mut b = item.add_b();
/// b.set_id(42);
/// mv.close().expect("close failed");
///
/// // open multivector and read the data
/// let archive = Z::open(storage).expect("open failed");
/// let mv = archive.ab();
///
/// assert_eq!(mv.len(), 1);
///
/// // Items are iterators over `AbRef` enums with variants `A` and `B`.
/// // The name of the item type is the name of the multivector in the archive with the `Ref`
/// // suffix.
/// let mut item = mv.at(0);
/// match item.next().unwrap() {
/// AbRef::A(a) => assert_eq!((a.x(), a.y()), (1, 2)),
/// _ => assert!(false),
/// }
/// match item.next().unwrap() {
/// AbRef::B(b) => assert_eq!(b.id(), 42),
/// _ => assert!(false),
/// }
/// ```
///
/// [`ExternalVector`]: struct.ExternalVector.html
/// [`Vector`]: struct.Vector.html
/// [`MultiArrayView`]: struct.MultiArrayView.html
pub struct MultiVector<'a, Ts>
where
Ts: VariadicRefFactory,
{
index: ExternalVector<'a, Ts::Index>,
data: Vec<u8>,
data_handle: ResourceHandle<'a>,
size_flushed: usize,
_phantom: marker::PhantomData<Ts>,
}
impl<'a, Ts> MultiVector<'a, Ts>
where
Ts: VariadicRefFactory,
{
/// Creates an empty multivector.
pub fn new(index: ExternalVector<'a, Ts::Index>, data_handle: ResourceHandle<'a>) -> Self {
Self {
index,
data: Vec::new(),
data_handle,
size_flushed: 0,
_phantom: marker::PhantomData,
}
}
/// Appends a new item to the end of this multivector and returns a builder
/// for it.
///
/// The builder is used for storing different variants of `Ts` in the newly
/// created item.
///
/// Calling this method may flush data to storage (cf. [`flush`]), which
/// may fail due to different IO reasons.
///
/// [`flush`]: #method.flush
pub fn grow(&mut self) -> io::Result<<Ts as VariadicStruct>::ItemMut> {
if self.data.len() > 1024 * 1024 * 32 {
self.flush()?;
}
self.add_to_index()?;
Ok(<Ts as VariadicStruct>::create_mut(&mut self.data))
}
/// Flushes the not yet flushed content in this multivector to storage.
///
/// Only data is flushed.
fn flush(&mut self) -> io::Result<()> {
self.data_handle.borrow_mut().write(&self.data)?;
self.size_flushed += self.data.len();
self.data.clear();
Ok(())
}
fn add_to_index(&mut self) -> io::Result<()> {
let idx_mut = self.index.grow()?;
Ts::Index::set_index(idx_mut, self.size_flushed + self.data.len());
Ok(())
}
/// Flushes the remaining not yet flushed elements in this multivector and
/// finalizes the data inside the storage.
///
/// A multivector *must* be closed
pub fn close(mut self) -> Result<MultiArrayView<'a, Ts>, ResourceStorageError> {
let name: String = self.data_handle.name().into();
let into_storage_error = |e| ResourceStorageError::from_io_error(e, name.clone());
self.add_to_index().map_err(into_storage_error)?; // sentinel for last item
self.flush().map_err(into_storage_error)?;
let index_view = self.index.close()?;
let data = self.data_handle.close()?;
Ok(MultiArrayView::new(index_view, data))
}
}
impl<'a, Ts> fmt::Debug for MultiVector<'a, Ts>
where
Ts: VariadicRefFactory,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "MultiVector {{ len: {} }}", self.index.len())
}
}
#[cfg(test)]
#[allow(dead_code)]
mod tests {
use crate::{
memstorage::MemoryResourceStorage,
multiarrayview::MultiArrayView,
storage::{create_multi_vector, ResourceStorage},
test::{Ab, AbRef, _builtin::multivector::IndexType16},
};
#[test]
fn test_multi_vector() {
let storage = MemoryResourceStorage::new("/root/resources");
{
let mut mv = create_multi_vector::<Ab>(&*storage, "multivector", "Some schema")
.expect("failed to create MultiVector");
{
let mut item = mv.grow().expect("grow failed");
{
let a = item.add_a();
a.set_x(1);
a.set_y(2);
assert_eq!(a.x(), 1);
assert_eq!(a.y(), 2);
}
{
let b = item.add_a();
b.set_x(3);
b.set_y(4);
assert_eq!(b.x(), 3);
assert_eq!(b.y(), 4);
}
}
let view = mv.close().expect("close failed");
// view can also be used directly after closing
assert_eq!(view.len(), 1);
let mut item = view.at(0);
let a = item.next().unwrap();
match a {
AbRef::A(ref a) => {
assert_eq!(a.x(), 1);
assert_eq!(a.y(), 2);
}
AbRef::B(_) => panic!("unexpected variant B"),
}
}
let index_resource = storage
.read_and_check_schema("multivector_index", "index(Some schema)")
.expect("read_and_check_schema failed");
use crate::SliceExt;
let index = <&[IndexType16]>::from_bytes(&index_resource).expect("Corrupted data");
let resource = storage
.read_and_check_schema("multivector", "Some schema")
.expect("read_and_check_schema failed");
let mv: MultiArrayView<Ab> = MultiArrayView::new(index, &resource);
assert_eq!(mv.len(), 1);
let mut item = mv.at(0);
let a = item.next().unwrap();
match a {
AbRef::A(ref a) => {
assert_eq!(a.x(), 1);
assert_eq!(a.y(), 2);
}
AbRef::B(_) => panic!("unexpected variant B"),
}
let b = item.next().unwrap();
match b {
AbRef::A(ref a) => {
assert_eq!(a.x(), 3);
assert_eq!(a.y(), 4);
}
AbRef::B(_) => panic!("unexpected variant B"),
}
let x = {
// test clone and lifetime of returned reference
let mv_copy = mv.clone();
mv_copy.at(0).next().unwrap()
};
match x {
AbRef::A(ref a) => {
assert_eq!(a.x(), 1);
assert_eq!(a.y(), 2);
}
AbRef::B(_) => panic!("unexpected variant B"),
}
let x = {
// test clone and lifetime of returned reference
let mv_copy = mv.clone();
mv_copy.iter().next().unwrap().next().unwrap()
};
match x {
AbRef::A(ref a) => {
assert_eq!(a.x(), 1);
assert_eq!(a.y(), 2);
}
AbRef::B(_) => panic!("unexpected variant B"),
}
}
}