1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use std::ops;

use nalgebra::Perspective3;

use crate::{Circle, Line, Scalar};

use super::{Aabb, Point, Segment, Triangle, Vector};

/// An affine transform
#[repr(C)]
#[derive(Debug, Clone, Copy, Default)]
pub struct Transform(nalgebra::Transform<f64, nalgebra::TAffine, 3>);

impl Transform {
    /// Construct an identity transform
    pub fn identity() -> Self {
        Self(nalgebra::Transform::identity())
    }

    /// Construct a translation
    pub fn translation(offset: impl Into<Vector<3>>) -> Self {
        let offset = offset.into();

        Self(nalgebra::Transform::from_matrix_unchecked(
            nalgebra::OMatrix::new_translation(&offset.to_na()),
        ))
    }

    /// Construct a rotation
    ///
    /// The direction of the vector defines the rotation axis. Its length
    /// defines the angle of the rotation.
    pub fn rotation(axis_angle: impl Into<Vector<3>>) -> Self {
        let axis_angle = axis_angle.into();

        Self(nalgebra::Transform::from_matrix_unchecked(
            nalgebra::OMatrix::<_, nalgebra::Const<4>, _>::new_rotation(
                axis_angle.to_na(),
            ),
        ))
    }

    /// Construct a scaling
    pub fn scale(scaling_factor: f64) -> Self {
        Self(nalgebra::Transform::from_matrix_unchecked(
            nalgebra::OMatrix::new_scaling(scaling_factor),
        ))
    }

    /// Transform the given point
    pub fn transform_point(&self, point: &Point<3>) -> Point<3> {
        Point::from(self.0.transform_point(&point.to_na()))
    }

    /// Inverse transform given point
    pub fn inverse_transform_point(&self, point: &Point<3>) -> Point<3> {
        Point::from(self.0.inverse_transform_point(&point.to_na()))
    }

    /// Transform the given vector
    pub fn transform_vector(&self, vector: &Vector<3>) -> Vector<3> {
        Vector::from(self.0.transform_vector(&vector.to_na()))
    }

    /// Transform the given line
    pub fn transform_line(&self, line: &Line<3>) -> Line<3> {
        Line::from_origin_and_direction(
            self.transform_point(&line.origin()),
            self.transform_vector(&line.direction()),
        )
    }

    /// Transform the given segment
    pub fn transform_segment(&self, segment: &Segment<3>) -> Segment<3> {
        let [a, b] = &segment.points();
        Segment::from([self.transform_point(a), self.transform_point(b)])
    }

    /// Transform the given triangle
    pub fn transform_triangle(&self, triangle: &Triangle<3>) -> Triangle<3> {
        let [a, b, c] = &triangle.points();
        Triangle::from([
            self.transform_point(a),
            self.transform_point(b),
            self.transform_point(c),
        ])
    }

    /// Transform the given circle
    pub fn transform_circle(&self, circle: &Circle<3>) -> Circle<3> {
        Circle::new(
            self.transform_point(&circle.center()),
            self.transform_vector(&circle.a()),
            self.transform_vector(&circle.b()),
        )
    }

    /// Inverse transform
    pub fn inverse(&self) -> Self {
        Self(self.0.inverse())
    }

    /// Transpose transform
    pub fn transpose(&self) -> Self {
        Self(nalgebra::Transform::from_matrix_unchecked(
            self.0.to_homogeneous().transpose(),
        ))
    }

    /// Project transform according to camera specification, return data as an array.
    /// Used primarily for graphics code.
    pub fn project_to_array(
        &self,
        aspect_ratio: f64,
        fovy: f64,
        znear: f64,
        zfar: f64,
    ) -> [Scalar; 16] {
        let projection = Perspective3::new(aspect_ratio, fovy, znear, zfar);

        let mut array = [0.; 16];
        array.copy_from_slice(
            (projection.to_projective() * self.0).matrix().as_slice(),
        );

        array.map(Scalar::from)
    }

    /// Return a copy of the inner nalgebra transform
    pub fn get_inner(&self) -> nalgebra::Transform<f64, nalgebra::TAffine, 3> {
        self.0
    }

    /// Transform the given axis-aligned bounding box
    pub fn transform_aabb(&self, aabb: &Aabb<3>) -> Aabb<3> {
        Aabb {
            min: self.transform_point(&aabb.min),
            max: self.transform_point(&aabb.max),
        }
    }

    /// Exposes the data of this Transform as a slice of f64.
    pub fn data(&self) -> &[f64] {
        self.0.matrix().data.as_slice()
    }

    /// Extract the rotation component of this transform
    pub fn extract_rotation(&self) -> Self {
        Self(nalgebra::Transform::from_matrix_unchecked(
            self.0.matrix().fixed_resize::<3, 3>(0.).to_homogeneous(),
        ))
    }

    /// Extract the translation component of this transform
    pub fn extract_translation(&self) -> Self {
        *self * self.extract_rotation().inverse()
    }
}

impl ops::Mul<Self> for Transform {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        Self(self.0.mul(rhs.0))
    }
}

#[cfg(test)]
mod tests {
    use approx::assert_abs_diff_eq;

    use crate::{Line, Point, Scalar, Vector};

    use super::Transform;

    #[test]
    fn transform() {
        let line = Line::from_origin_and_direction(
            Point::from([1., 0., 0.]),
            Vector::from([0., 1., 0.]),
        );

        let transform = Transform::translation([1., 2., 3.])
            * Transform::rotation(Vector::unit_z() * (Scalar::PI / 2.));
        let line = transform.transform_line(&line);

        assert_abs_diff_eq!(
            line,
            Line::from_origin_and_direction(
                Point::from([1., 3., 3.]),
                Vector::from([-1., 0., 0.]),
            ),
            epsilon = Scalar::from(1e-8),
        );
    }

    #[test]
    fn extract_rotation_translation() {
        let rotation =
            Transform::rotation(Vector::unit_z() * (Scalar::PI / 2.));
        let translation = Transform::translation([1., 2., 3.]);

        assert_abs_diff_eq!(
            (translation * rotation).extract_rotation().data(),
            rotation.data(),
            epsilon = 1e-8,
        );

        assert_abs_diff_eq!(
            (translation * rotation).extract_translation().data(),
            translation.data(),
            epsilon = 1e-8,
        );

        assert_abs_diff_eq!(
            (rotation * translation).extract_rotation().data(),
            rotation.data(),
            epsilon = 1e-8,
        );

        assert_abs_diff_eq!(
            (rotation * translation).extract_translation().data(),
            Transform::translation([-2., 1., 3.]).data(),
            epsilon = 1e-8,
        );
    }
}