1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
use crate::{Point, Scalar, Triangle, Vector};

/// An n-dimensional line, defined by an origin and a direction
///
/// The dimensionality of the line is defined by the const generic `D`
/// parameter.
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq, Hash, Ord, PartialOrd)]
#[repr(C)]
pub struct Line<const D: usize> {
    origin: Point<D>,
    direction: Vector<D>,
}

impl<const D: usize> Line<D> {
    /// Create a line from a point and a vector
    ///
    /// # Panics
    ///
    /// Panics, if `direction` has a length of zero.
    pub fn from_origin_and_direction(
        origin: Point<D>,
        direction: Vector<D>,
    ) -> Self {
        assert!(
            direction.magnitude() != Scalar::ZERO,
            "Can't construct `Line`. Direction is zero: {direction:?}"
        );

        Self { origin, direction }
    }

    /// Create a line from two points
    ///
    /// Also returns the lines coordinates of the provided points on the new
    /// line.
    ///
    /// # Panics
    ///
    /// Panics, if the points are coincident.
    pub fn from_points(
        points: [impl Into<Point<D>>; 2],
    ) -> (Self, [Point<1>; 2]) {
        let [a, b] = points.map(Into::into);

        let line = Self::from_origin_and_direction(a, b - a);
        let coords = [[0.], [1.]].map(Point::from);

        (line, coords)
    }

    /// Create a line from two points that include line coordinates
    ///
    /// # Panics
    ///
    /// Panics, if the points are coincident.
    pub fn from_points_with_line_coords(
        points: [(impl Into<Point<1>>, impl Into<Point<D>>); 2],
    ) -> Self {
        let [(a_line, a_global), (b_line, b_global)] =
            points.map(|(point_line, point_global)| {
                (point_line.into(), point_global.into())
            });

        let direction = (b_global - a_global) / (b_line - a_line).t;
        let origin = a_global + direction * -a_line.t;

        Self::from_origin_and_direction(origin, direction)
    }

    /// Access the origin of the line
    ///
    /// The origin is a point on the line which, together with the `direction`
    /// field, defines the line fully. The origin also defines the origin of the
    /// line's 1-dimensional coordinate system.
    pub fn origin(&self) -> Point<D> {
        self.origin
    }

    /// Access the direction of the line
    ///
    /// The length of this vector defines the unit of the line's curve
    /// coordinate system. The coordinate `1.` is always were the direction
    /// vector points, from `origin`.
    pub fn direction(&self) -> Vector<D> {
        self.direction
    }

    /// Determine if this line is coincident with another line
    ///
    /// # Implementation Note
    ///
    /// This method only returns `true`, if the lines are precisely coincident.
    /// This will probably not be enough going forward, but it'll do for now.
    pub fn is_coincident_with(&self, other: &Self) -> bool {
        let other_origin_is_not_on_self = {
            let a = other.origin;
            let b = self.origin;
            let c = self.origin + self.direction;

            // The triangle is valid only, if the three points are not on the
            // same line.
            Triangle::from_points([a, b, c]).is_ok()
        };

        if other_origin_is_not_on_self {
            return false;
        }

        let d1 = self.direction.normalize();
        let d2 = other.direction.normalize();

        d1 == d2 || d1 == -d2
    }

    /// Create a new instance that is reversed
    #[must_use]
    pub fn reverse(mut self) -> Self {
        self.origin += self.direction;
        self.direction = -self.direction;
        self
    }

    /// Convert a `D`-dimensional point to line coordinates
    ///
    /// Projects the point onto the line before the conversion. This is done to
    /// make this method robust against floating point accuracy issues.
    ///
    /// Callers are advised to be careful about the points they pass, as the
    /// point not being on the line, intentional or not, will never result in an
    /// error.
    pub fn point_to_line_coords(&self, point: impl Into<Point<D>>) -> Point<1> {
        Point {
            coords: self.vector_to_line_coords(point.into() - self.origin),
        }
    }

    /// Convert a `D`-dimensional vector to line coordinates
    pub fn vector_to_line_coords(
        &self,
        vector: impl Into<Vector<D>>,
    ) -> Vector<1> {
        let t = vector.into().scalar_projection_onto(&self.direction)
            / self.direction.magnitude();
        Vector::from([t])
    }

    /// Convert a point in line coordinates into a `D`-dimensional point
    pub fn point_from_line_coords(
        &self,
        point: impl Into<Point<1>>,
    ) -> Point<D> {
        self.origin + self.vector_from_line_coords(point.into().coords)
    }

    /// Convert a vector in line coordinates into a `D`-dimensional vector
    pub fn vector_from_line_coords(
        &self,
        vector: impl Into<Vector<1>>,
    ) -> Vector<D> {
        self.direction * vector.into().t
    }
}

impl<const D: usize> approx::AbsDiffEq for Line<D> {
    type Epsilon = <Scalar as approx::AbsDiffEq>::Epsilon;

    fn default_epsilon() -> Self::Epsilon {
        Scalar::default_epsilon()
    }

    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.origin.abs_diff_eq(&other.origin, epsilon)
            && self.direction.abs_diff_eq(&other.direction, epsilon)
    }
}

#[cfg(test)]
mod tests {
    use approx::assert_abs_diff_eq;

    use crate::{Point, Scalar, Vector};

    use super::Line;

    #[test]
    fn from_points_with_line_coords() {
        let line = Line::from_points_with_line_coords([
            ([0.], [0., 0.]),
            ([1.], [1., 0.]),
        ]);
        assert_eq!(line.origin(), Point::from([0., 0.]));
        assert_eq!(line.direction(), Vector::from([1., 0.]));

        let line = Line::from_points_with_line_coords([
            ([1.], [0., 1.]),
            ([0.], [1., 1.]),
        ]);
        assert_eq!(line.origin(), Point::from([1., 1.]));
        assert_eq!(line.direction(), Vector::from([-1., 0.]));

        let line = Line::from_points_with_line_coords([
            ([-1.], [0., 2.]),
            ([0.], [1., 2.]),
        ]);
        assert_eq!(line.origin(), Point::from([1., 2.]));
        assert_eq!(line.direction(), Vector::from([1., 0.]));
    }

    #[test]
    fn is_coincident_with() {
        let (line, _) = Line::from_points([[0., 0.], [1., 0.]]);

        let (a, _) = Line::from_points([[0., 0.], [1., 0.]]);
        let (b, _) = Line::from_points([[0., 0.], [-1., 0.]]);
        let (c, _) = Line::from_points([[0., 1.], [1., 1.]]);

        assert!(line.is_coincident_with(&a));
        assert!(line.is_coincident_with(&b));
        assert!(!line.is_coincident_with(&c));
    }

    #[test]
    fn convert_point_to_line_coords() {
        let line = Line {
            origin: Point::from([1., 2., 3.]),
            direction: Vector::from([2., 3., 5.]),
        };

        verify(line, -1.);
        verify(line, 0.);
        verify(line, 1.);
        verify(line, 2.);

        fn verify(line: Line<3>, t: f64) {
            let point = line.point_from_line_coords([t]);
            let t_result = line.point_to_line_coords(point);

            assert_abs_diff_eq!(
                Point::from([t]),
                t_result,
                epsilon = Scalar::from(1e-8)
            );
        }
    }
}