1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
use crate::{Point, Scalar};
pub struct Arc {
pub start: Point<2>,
pub end: Point<2>,
pub center: Point<2>,
pub radius: Scalar,
pub start_angle: Scalar,
pub end_angle: Scalar,
pub flipped_construction: bool,
}
impl Arc {
pub fn from_endpoints_and_angle(
p0: impl Into<Point<2>>,
p1: impl Into<Point<2>>,
angle: Scalar,
) -> Self {
use num_traits::Float;
let (p0, p1) = (p0.into(), p1.into());
let flipped_construction = angle <= Scalar::ZERO;
let angle_rad = angle.abs();
let [p0, p1] = if flipped_construction {
[p1, p0]
} else {
[p0, p1]
};
let (uv_factor, end_angle_offset) = if angle_rad > Scalar::PI {
(Scalar::from_f64(-1.), Scalar::TAU)
} else {
(Scalar::ONE, Scalar::ZERO)
};
let [[x0, y0], [x1, y1]] = [p0, p1].map(|p| p.coords.components);
let d = ((x1 - x0).powi(2) + (y1 - y0).powi(2)).sqrt();
let r = d / (2. * (angle_rad.into_f64() / 2.).sin());
let h = (r.powi(2) - (d.powi(2) / 4.)).sqrt();
let u = (x1 - x0) / d * uv_factor;
let v = (y1 - y0) / d * uv_factor;
let cx = ((x0 + x1) / 2.) - h * v;
let cy = ((y0 + y1) / 2.) + h * u;
let start_angle = (y0 - cy).atan2(x0 - cx);
let end_angle = (y1 - cy).atan2(x1 - cx) + end_angle_offset;
Self {
start: p0,
end: p1,
center: Point::from([cx, cy]),
radius: r,
start_angle,
end_angle,
flipped_construction,
}
}
}
#[cfg(test)]
mod tests {
use crate::{Point, Scalar};
use super::Arc;
use approx::AbsDiffEq;
fn check_arc_calculation(center: [f64; 2], radius: f64, a0: f64, a1: f64) {
let angle = a1 - a0;
let p0 = [center[0] + radius * a0.cos(), center[1] + radius * a0.sin()];
let p1 = [center[0] + radius * a1.cos(), center[1] + radius * a1.sin()];
let arc = Arc::from_endpoints_and_angle(p0, p1, Scalar::from(angle));
let epsilon = Scalar::default_epsilon() * 10.;
dbg!(center, arc.center);
dbg!(arc.start_angle);
dbg!(arc.end_angle);
dbg!(arc.flipped_construction);
assert!(arc.center.abs_diff_eq(&Point::from(center), epsilon));
assert!(arc.radius.abs_diff_eq(&Scalar::from(radius), epsilon));
if a0 < a1 {
assert!(!arc.flipped_construction);
assert!(arc.start_angle.abs_diff_eq(&Scalar::from(a0), epsilon));
assert!(arc.end_angle.abs_diff_eq(&Scalar::from(a1), epsilon));
} else {
assert!(arc.flipped_construction);
assert!(arc.end_angle.abs_diff_eq(&Scalar::from(a0), epsilon));
assert!(arc.start_angle.abs_diff_eq(&Scalar::from(a1), epsilon));
}
}
#[test]
fn arc_construction() {
check_arc_calculation(
[0., 0.],
1.,
0_f64.to_radians(),
90_f64.to_radians(),
);
check_arc_calculation(
[-4., 2.],
1.5,
5_f64.to_radians(),
-5_f64.to_radians(),
);
check_arc_calculation(
[3., 8.],
3.,
0_f64.to_radians(),
100_f64.to_radians(),
);
check_arc_calculation(
[1., -1.],
1.,
90_f64.to_radians(),
180_f64.to_radians(),
);
check_arc_calculation(
[0., 0.],
1.,
0_f64.to_radians(),
270_f64.to_radians(),
);
}
}