1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
use fj_math::{Line, Point, Scalar, Vector};
use crate::objects::{Curve, Surface};
pub fn surface_surface(
a: &Surface,
b: &Surface,
) -> Option<(Curve<2>, Curve<2>, Curve<3>)> {
let a_parametric = PlaneParametric::extract_from_surface(a);
let b_parametric = PlaneParametric::extract_from_surface(b);
let a = PlaneConstantNormal::from_parametric_plane(&a_parametric);
let b = PlaneConstantNormal::from_parametric_plane(&b_parametric);
let direction = a.normal.cross(&b.normal);
let denom = direction.dot(&direction);
if denom == Scalar::ZERO {
return None;
}
let origin = (b.normal * a.distance - a.normal * b.distance)
.cross(&direction)
/ denom;
let origin = Point { coords: origin };
let line = Line { origin, direction };
let curve_a = project_line_into_plane(&line, &a_parametric);
let curve_b = project_line_into_plane(&line, &b_parametric);
let curve_global = Curve::Line(Line { origin, direction });
Some((curve_a, curve_b, curve_global))
}
struct PlaneParametric {
pub origin: Point<3>,
pub u: Vector<3>,
pub v: Vector<3>,
}
impl PlaneParametric {
pub fn extract_from_surface(surface: &Surface) -> Self {
let Surface::SweptCurve(surface) = surface;
let line = match surface.curve {
Curve::Line(line) => line,
_ => todo!("Only plane-plane intersection is currently supported."),
};
Self {
origin: line.origin,
u: line.direction,
v: surface.path,
}
}
}
struct PlaneConstantNormal {
pub distance: Scalar,
pub normal: Vector<3>,
}
impl PlaneConstantNormal {
pub fn from_parametric_plane(plane: &PlaneParametric) -> Self {
let a = plane.origin;
let b = plane.origin + plane.u;
let c = plane.origin + plane.v;
let normal = (b - a).cross(&(c - a)).normalize();
let distance = normal.dot(&a.coords);
PlaneConstantNormal { distance, normal }
}
}
fn project_line_into_plane(
line: &Line<3>,
plane: &PlaneParametric,
) -> Curve<2> {
let line_origin_relative_to_plane = line.origin - plane.origin;
let line_origin_in_plane = Vector::from([
plane
.u
.scalar_projection_onto(&line_origin_relative_to_plane),
plane
.v
.scalar_projection_onto(&line_origin_relative_to_plane),
]);
let line_direction_in_plane = Vector::from([
plane.u.scalar_projection_onto(&line.direction),
plane.v.scalar_projection_onto(&line.direction),
]);
let line = Line {
origin: Point {
coords: line_origin_in_plane,
},
direction: line_direction_in_plane,
};
Curve::Line(line)
}
#[cfg(test)]
mod tests {
use fj_math::Transform;
use crate::{
algorithms::TransformObject,
objects::{Curve, Surface},
};
use super::surface_surface;
#[test]
fn plane_plane() {
let xy = Surface::xy_plane();
let xz = Surface::xz_plane();
assert_eq!(surface_surface(&xy, &xy), None);
assert_eq!(
surface_surface(
&xy,
&xy.transform(&Transform::translation([0., 0., 1.]))
),
None,
);
let expected_xy = Curve::u_axis();
let expected_xz = Curve::u_axis();
let expected_global = Curve::x_axis();
assert_eq!(
surface_surface(&xy, &xz),
Some((expected_xy, expected_xz, expected_global))
);
}
}